Skip to main content
Log in

Preparation of spherical SnO2 particles by W/O type emulsion method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An attempt to prepare spherical particles was made using a W/O type emulsion as a reaction field. The effects of surfactant content, W/O ratio and stirring conditions for the preparation of emulsions, which determined the size of water drops in the emulsions, were investigated on the size and morphology of the obtained SnO2 particles. The size and morphology of the obtained particles were largely influenced by a water/surfactant molar ratio (R-value) for the preparation of the emulsions. Particles having relatively high sphericity were obtained at an R-value below 1500. In order to obtain mono-sized SnO2 particles with narrow distributions, R-value should be adjusted to the narrow range from 250 to 500. Spherical SnO2 particles showing narrow particle size distributions were obtained at W/O ratio of 1/1 and surfactant content of 11.2 × 10−2 mol/l or 22.4 × 10−2 mol/l. Furthermore, the particle size and morphology of SnO2 depended on the revolution rate of an emulsifier for emulsification. Mono-dispersed spherical particles having narrow size distributions formed at revolution rates of 3000 and 4000 rpm. At extremely low and high revolution rate of the emulsifier, particles showing high sphericity were not obtained, but agglomerates of un-spherical fine particles. The interfacial reaction time determined the internal structures of spherical particles. The reaction for short time yielded hollow spherical SnO2 particles, and the internal structure of the particles became denser with increasing reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. KOISHI, in“Biryu-shi sekkei” (Kogyo-chosakai, Tokyo, 1988) p. 23.

    Google Scholar 

  2. T. SUGIMOTO, Hyo-men 22 (1984) 177.

    Google Scholar 

  3. J. TAKAHASHI, J. Soc. Powder Tech. Jpn. 29 (1992) 286.

    Google Scholar 

  4. N. MIZUTANI, ibid. 26 (1989) 183.

    Google Scholar 

  5. S. HIRANO, Ceramics 22 (1987) 1052.

    Google Scholar 

  6. E. MATIJEVIC, J. Colloid Interface Sci. 58 (1976) 374.

    Google Scholar 

  7. B. J. INGEBRETHEN and E. MATIJEVIC, J. Aerosol Sci. 11 (1979) 271.

    Google Scholar 

  8. T. SUGIMOTO and E. MATIJEVIC, J. Colloid Interface Sci. 74 (1980) 227.

    Google Scholar 

  9. D. L. CATONE and E. MATIJEVIC, ibid. 48 (1974) 291.

    Google Scholar 

  10. M. D. SACKS, T. Y. TSENG and S. Y. LEE, Am. Ceram. Soc. Bull. 63 (1984) 301.

    Google Scholar 

  11. J. E. BLENDELL, H. K. BOWEN and R. L. COBLE, ibid. 63 (1984) 797.

    Google Scholar 

  12. B. FEGLEY JR, P. WHITE and H. K. BOWEN, ibid. 64 (1985) 1115.

    Google Scholar 

  13. T. OGIHARA, T. IKEMOTO, N. MIZUTANI and M. KATO, J. Mater. Sci. 21 (1986) 2771.

    Google Scholar 

  14. K. UCHYAMA, T. OGIHARA, T. IKEMOTO, N. MIZUTANI and M. KATO, ibid. 22 (1987) 4343.

    Google Scholar 

  15. T. OGIHARA and N. MIZUTANI, Inorganic Mater. 3 (1996) 194.

    Google Scholar 

  16. T. IMAI, Shikizai 71 (1998) 194.

    Google Scholar 

  17. Y. NAKAHARA, ibid. 59 (1986) 543.

    Google Scholar 

  18. S. KIDA, J. Soc. Powder Tech. Jpn. 24 (1987) 474.

    Google Scholar 

  19. M. JEFELICCI JR, M. R. DAVOLOS, F. J. D. SANTOS and S. J ANDRADE, J. Non-Cryst. Solids 247 (1999) 98.

    Google Scholar 

  20. J. F. MACALEER, P. T. MOSELEY, J. O. W. NORRIS and D. E. WILLIAMS, J. Chem. Soc., Faraday Trans. 1 83 (1987) 1323.

    Google Scholar 

  21. V. LANTTO and P. ROMPPAINEN, J. Electrochem. Soc. 135 (1988) 2550.

    Google Scholar 

  22. K. H. SONG and S. J. PARK, J. Mater. Sci.: Mater. in Electronics 4 (1993) 249.

    Google Scholar 

  23. N. L. WU, S. Y. WANG and I. A. RUSOKAVA, Science 285 (1999) 1375.

    Google Scholar 

  24. C. NAYRAL, T. O. ELY, A. MAISONNAT, B. CHAUDRET, P. FAU, L. LESCOUZERES and A. P. LAVGNE, Adv. Mater. 11 (1999) 61.

    Google Scholar 

  25. A. K. MUKHOPADHYAY, P. MITRA, A. P. CHATTERJEE and H. S. MATI, Ceram. Int. 26 (2000) 123.

    Google Scholar 

  26. E. R. LEITE, I. T. WEBER, E. LONGO and J. A. VARELA, Adv. Mater. 12 (2000) 965.

    Google Scholar 

  27. H. SHIOMI, H. KOBAYASHI, T. KIMURA and M. NAKAMURA, J. Mater. Sci.: Mater. in Electronics 7 (1996) 437.

    Google Scholar 

  28. H. SHIOMI, H. KOBAYASHI and M. NAKAMURA, J. Ceram. Soc. Jpn. 106 (1998) 213.

    Google Scholar 

  29. H. SHIOMI and H. FURUKAWA, J. Mater. Sci.: Mater. in Electronics 11 (2000) 31.

    Google Scholar 

  30. M. ABE, Shikizai 67 (1994) 263.

    Google Scholar 

  31. H. NAKAJIMA, ibid. 71 (1998) 526.

    Google Scholar 

  32. J. BOYD, C. PARKINSON and P. SHERMAN, J. Colloid Interface Sci. 41 (1972) 359.

    Google Scholar 

  33. T. KAWAI, Shikizai 71 (1998) 449.

    Google Scholar 

  34. A. KITAHARA and K. FURUSAWA, in “Saishin Koroidokagaku” (Koudan-sya, Tokyo, 1993) p. 41.

    Google Scholar 

  35. H. NAKAJIMA, Hyo-men 36 (1998) 39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiomi, H., Tanaka, C. Preparation of spherical SnO2 particles by W/O type emulsion method. Journal of Materials Science 37, 4683–4689 (2002). https://doi.org/10.1023/A:1020625121771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020625121771

Keywords

Navigation