Skip to main content
Log in

The fracture toughness of bast fibre reinforced polyester composites Part 1 Evaluation and analysis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hemp and jute fibre reinforced polyester composites were fabricated to various fibre volume fractions (V f) up to 0.45. Laminates reinforced with a chopped strand mat (CSM) glass fibre were also manufactured. The tensile properties of these materials were evaluated. Fracture toughness was assessed, using linear elastic fracture mechanics (LEFM) principles, under quasi-static loading conditions. At equivalent V f (0.2) it was found that the fracture toughness (K Ic) of the CSM glass fibre reinforced material was approximately 3 times greater than that of the natural fibre reinforced laminates and an order of magnitude greater than the unreinforced polymer alone. Critical strain energy release rates (G c) and plastic zone radii were computed. The G c of the natural fibre reinforced laminates was approximately an order of magnitude lower than that of the CSM reinforced material at the same V f. It was hypothesised that the size of the crack-tip plastic zone influences the energy absorbing capacity of the material. By comparing the relative volumes of the plastic zones, implications regarding the toughening mechanisms operative in natural fibre reinforced composites have been made. The applicability of LEFM to characterise toughness in these materials is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. GORDON, in “The New Science of Strong Materials” (Penguin Books, London, 1976) p. 135.

    Google Scholar 

  2. P. J. ROE and M. P. ANSELL, J. Mater. Sci. 20 (1985) 4015.

    Google Scholar 

  3. B. HARRIS, in “ENGINEERING COMPOSITE MATERIALS” (Inst. of Metals, London, 1980).

  4. A. R. SANADI, S. V. PRASAD and P. K. ROHATGI, J. Mater. Sci. 21 (1986) 4299.

    Google Scholar 

  5. S. V. PRASAD, C. PAVITHRAN and P. K. ROHATGI, ibid. 18 (1983) 1443.

    Google Scholar 

  6. N. M. WHITE and M. P. ANSELL, J. Mat. Sci. 18 (1983) 1549.

    Google Scholar 

  7. J. L. O'DELL, in Proceedings of the 4th International Conference onWoodfiber-Plastic Composites, Madison, May 1997 (Forest Products Society, Madison, 1997) p. 280.

    Google Scholar 

  8. M. HUGHES, L. MOTT, J. HAGUE and C. A. S. HILL, in Proceedings of the 5th International Conference on Woodfiber-Plastic Composites, Madison, May 1999 (Forest Products Society, Madison, 1999) p. 175.

    Google Scholar 

  9. G. SEBE, N. S. CETIN, C. A. S. HILL and M. HUGHES, App. Comp. Mat. 7 (2000) 341.

    Google Scholar 

  10. M. HUGHES, Ph.D. thesis, University of Wales, Bangor, 2000.

  11. D. HULL and T. W. CLYNE, in “An Introduction to Composite Materials” (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  12. J. MARTIN, in “Materials for Engineering” (Inst. of Materials, London, 1996).

    Google Scholar 

  13. J. F. KNOTT, in “Fundamentals of Fracture Mechanics” (Butterworths, London, 1973).

    Google Scholar 

  14. V. Z. PARTON, in “Fracture Mechanics: From Theory to Practice” (Gordon and Breach, Philadelphia, 1992).

    Google Scholar 

  15. BS 7448: Part 1. (British Standards Institution, London, 1991).

  16. ASTM. Designation: E 399–90. (ASTM, Philadelphia, 1991).

  17. M. PATTON-MALLORY and S. M. CRAMER, Forest Products Journal 37(7/8) (1987) 39.

    Google Scholar 

  18. J. G. WILLIAMS, Phil. Trans. R. Soc. Lond. A 299 (1981) 59.

    Google Scholar 

  19. S. E. STANZL-TSCHEGG, E. K. TSCHEGG and A. TEISCHINGER, Wood and Fiber Science 26(4) (1994) 467.

    Google Scholar 

  20. S. E. STANZL-TSCHEGG, D. M. TAN and E. K. TSCHEGG, Wood Sci. Technol. 29 (1995) 31.

    Google Scholar 

  21. Idem., Mokuzai Gakkaishi 42(7) (1996) 642.

    Google Scholar 

  22. P. W. LUCAS, M. F. CHOONG, H. T. TAN, I. M. TURNER and A. J. BERRICK, Phil. Trans. R. Soc. Lond. B 334 (1991) 95.

    Google Scholar 

  23. P. W. LUCAS, B. W. DARVELL, K. D. LEE, T. D. B. YUEN and M. F. CHOONG, ibid. 348 (1995) 363.

    Google Scholar 

  24. P. W. LUCAS, H. T. W. TAN and P. Y. CHENG, ibid. 352 (1997) 342.

    Google Scholar 

  25. T. L. ANDERSON, in “Fracture Mechanics: Fundamentals and Applications, ” 2nd ed. (CRC Press, Boca Raton, FL, 1995).

    Google Scholar 

  26. BS 2782: Part 10: Method 1003: (1977) EN 61 (British Standards Institution, London, 1977).

  27. F. L. MATTHEWS and R. D. RAWLINGS, in “Composite Materials: Engineering and Science” (Chapman and Hall, London, 1994).

    Google Scholar 

  28. M. F. ASHBY and D. R. H. JONES, in “Engineering Materials: An Introduction to Their Properties and Applications” (Pergamon Press, Oxford, 1980).

    Google Scholar 

  29. J. IVENS, H. BOS and I. VERPOEST, in “Renewable Biproducts: Industrial Outlets and Research for the 21st Century, ” edited by International Agricultural Center (IAC,Wageningen, The Netherlands, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, M., Hill, C.A.S. & Hague, J.R.B. The fracture toughness of bast fibre reinforced polyester composites Part 1 Evaluation and analysis . Journal of Materials Science 37, 4669–4676 (2002). https://doi.org/10.1023/A:1020621020862

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020621020862

Keywords

Navigation