Skip to main content
Log in

The cell membrane and the struggle for life of lactic acid bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The major life-threatening event for lactic acid bacteria (LAB) in their natural environment is the depletion of their energy sources and LAB can survive such conditions only for a short period of time. During periods of starvation LAB can exploit optimally the potential energy sources in their environment usually by applying proton motive force generating membrane transport systems. These systems include in addition to the proton translocating FoF1-ATPase: a respiratory chain when hemin is present in the medium, electrogenic solute uptake and excretion systems, electrogenic lactate/proton symport and precursor/ product exchange systems. Most of these metabolic energy-generating systems offer as additional bonus the prevention of a lethal decrease of the internal and external pH. LAB have limited biosynthetic capacities and rely heavily on the presence of essential components such as sources of amino acids in their environment. The uptake of amino acids requires a major fraction of the available metabolic energy of LAB. The metabolic energy cost of amino acid uptake can be reduced drastically by accumulating oligopeptides instead of the individual amino acids and by proton motive force-generating efflux of excessively accumulated amino acids. Other life-threatening conditions that LAB encounter in their environment are rapid changes in the osmolality and the exposure to cytotoxic compounds, including antibiotics. LAB respond to osmotic upshock or downshock by accumulating or releasing rapidly osmolytes such as glycine-betaine. The life-threatening presence of cytotoxic compounds, including antibiotics, is effectively counteracted by powerful drug extruding multidrug resistance systems. The number and variety of defense mechanisms in LAB is surprisingly high. Most defense mechanisms operate in the cytoplasmic membrane to control the internal environment and the energetic status of LAB. Annotation of the functions of the genes in the genomes of LAB will undoubtely reveal additional defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe K, Hayashi H.& Maloney P.C. (1996) Exchange of aspartate and alanine. J. Biol. Chem. 271: 3079–3084.

    Google Scholar 

  • Abdedal AT (1979) Arginine catabolism by microorganisms. Annu. Rev. Microbiol. 33: 139–168.

    Google Scholar 

  • Ambudkar SV, Lynn AR, Maloney PC& Rosen B (1986) Reconstition of ATP-dependent Calcium transport from Streptococci. J. Biol. Chem. 261: 15596–15600.

    Google Scholar 

  • Blank LM, Koebman BJ, Michelsen D, Nielsen LK& Jansen PR (2001) Hemin reconstitutes proton extrusion in an H+-ATPasenegative mutant of Lactococcus lactis. J. Bacteriol. 183: 6707–6709.

    Google Scholar 

  • Bockelman W, Monnet V, Geis A, Teuber M& Gripon J-C (1989) Comparison of cell wall proteineases from Lactococcus lactis subsp. cremoris AC1 and Lactococcus lactis subsp. lactis NCDO 763. Appl. Microbiol. Biotechnol. 31: 278–282.

    Google Scholar 

  • Bolhuis H, Molenaar D, Poelarends GJ, van Veen HW, Poolman B, Driessen AJM& Konings WN (1994) Proton motive forcedriven and ATP-dependent drug extrusion systems in multidrugresistant Lactococcus lactis. J. Bacteriol. 176: 6957–6964.

    Google Scholar 

  • Bolhuis H, Poelarends GJ, van Veen HW, Poolman B, Driessen AJM& Konings WN (1995) The lactococcal lmrP gene encodes a proton motive force-dependent drug transporter. J. Biol. Chem. 270: 26092–26098.

    Google Scholar 

  • Bolhuis H, van Veen HW, Brands JR, Putman M, Poolman B, Driessen AJM& Konings WN (1996a) Energetics and mechanism of drug transport by the lactococcal multidrug transporter LmrP. J. Biol. Chem. 271: 24123–24128.

    Google Scholar 

  • Bolhuis H, Molenaar D, van Veen HW, Poolman B, Driessen AJM& Konings WN (1996b) Multidrug resitance in Lactococcus lactis: Evidence for ATP-dependent extrusion from the inner leaflet of the cytoplasmic membrane. EMBO J. 15: 4239–4245.

    Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD& Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.

    Google Scholar 

  • Clarke DJ& Knowles CJ (1980) The Effect of Haematin and Catalase on Streptococcus faecalis var. zymogens growing in glycerol. J. Gen. Microbiol. 121: 339–347.

    Google Scholar 

  • Crow VL& Thomas TD (1982) Arginine metabolism in Lactic Streptococci. J. Bacteriol. 150: 1024–1032.

    Google Scholar 

  • David S, van der Rest M, Driessen AJM, Simons G& de Vos WM (1990) Nucleotide sequence and expression in Escherichia coli of Lactococcus lactis citrate permease gene. J. Bacteriol. 172: 5789–5794.

    Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dessimination of resistance genes. Science 264: 375–382.

    Google Scholar 

  • Detmers FJM, Lanfermeijer FC& Konings WN (2001) Peptides and ATP binding cassette peptide transporters. Res. Microbiol. 152: 245–258.

    Google Scholar 

  • Detmers FJM, Lanfermeijer FC, Abele R, Jack RW, Tampe R, Konings WN & Poolman WN (2000) Combinatorial peptide libraries reveal the ligand binding mechanism of the oligopeptide receptor OppA of Lactococcus lactis. Proc. Natl Acad. Sci. USA 97: 12487–12492.

    Google Scholar 

  • Detmers FJM, Kunji ERS, Lanfermeijer FC, Poolman B& Konings WN (1998) Kinetics and specificity of peptide uptake by the oligopeptide receptor Opp A of Lactococcus lactis. Biochemistry 37: 16671–16679.

    Google Scholar 

  • Dicks LMT, Dellaglio F& Collins MD (1995) Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen.nov., comb.nov. Int. J. Syst. Bacteriol 45: 395–397.

    Google Scholar 

  • Driessen AJM (1987) Amino acid transport in lactic streptococi, Ph.D.thesis, University of Groningen.

  • Driessen AJM& Konings WN (1990) Energetic problems of Bacterial fermentations: Extrusion of metabolic endproducts. In: Krulwich TA (Ed) The Bacteria Vol XII (pp 449–478) Chapter 15, Academic Press, San Diego.

    Google Scholar 

  • Driessen AJM, Hellingwerf KJ& Konings WN (1985) Lightinduced generation of a proton motive force and Ca2+ transport in membrane vesicles of Streptococcus cremoris fused with bacteriorhodopsin proteoliposomes. In: Packer L (Ed) Recent Advances in Biological Membrane Studies (pp 439–462). Plenum Press, New York.

    Google Scholar 

  • Driessen AJM, Hellingwerf KJ& Konings WN (1987a) Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris. J. Biol. Chem. 262: 12438–12443.

    Google Scholar 

  • Driessen AJM, de Jong S& Konings WN (1987b) Transport of branched chain amino acids in membrane vesicles of Streptococcus cremoris. J. Bacteriol. 169: 5193–5200.

    Google Scholar 

  • Driessen AJM, Kodde J, de Jong S& Konings WN (1987c) Neutral amino acid transport by membrane vesicles of Streptococcus cremoris is subjected to regulation by the internal pH. J. Bacteriol. 169: 2748–2754.

    Google Scholar 

  • Driessen AJM, Poolman B, Kiewiet R& Konings WN (1987d) Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger. Proc. Natl. Acad. Sci U.S.A. 84: 6093–6097.

    Google Scholar 

  • Driessen AJM, van Leeuwen C& Konings WN (1989) Transport of basic amino acids by membrane vesicles of Lactococcus lactis. J. Bacteriol. 171: 1453–1458.

    Google Scholar 

  • Duwat P, Sourice SS, Cesselin B, Lamberet G, Vido K, Gaudo P, Leloir Y, Violet F, Loubiere P& Gruss A (2001) Respiratory capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J. Bacteriol. 183: 4509–4516.

    Google Scholar 

  • Flambard & Juillard V (2000) The autoproteolysis of Lactococcus lactis lactocepin III affects its specificity towards β-casein. Appl. Environ. Microbiol. 66: 5134–5140.

    Google Scholar 

  • Flambard, Helnick, Richard & Juillard V. (1998) The contribution to the amino acid supply for Lactococcus lactis depends on the type of proteinase. Appl. Environ. Microbiol. 64: 1991–996.

    Google Scholar 

  • Gajic O, G Buist, W Konings, L Topisirovic, J Kok and OP Kuipers (2001) MDR transporter protein involved in the secretion of and immunity against two lactococcal bacteriocins. Functional Genomics of Gram-Positive Microorganisms. Book of Abstracts (p 92). San Diego, CA.

  • Gale EF (1946) The bacterial amino acid decarboxylases. Adv. Enzymol. 6: 1–32.

    Google Scholar 

  • Garci-Quintans NC, Magni C, de Mendoza D& Lopez P (1998) The citrate transport system of Lactococcus lactis subsp.lactis biovar diacetylactis is induced by acid stress. Appl. Environ. Microbiol. 64: 850–857.

    Google Scholar 

  • Glaasker E, Konings WN& Poolman B (1996a) Osmotic regulation of intracellular pools in Lactobacillus plantarum. J. Bacteriol. 178: 575–582.

    Google Scholar 

  • Glaasker E, Konings WN& Poolman B (1996b) The application of pH-sensitive fluorescent dyes in lactic acid bacteria reveals distinct extrusion systems for unmodified and conjugated dyes. Mol. Membr. Biol. 13: 173–181.

    Google Scholar 

  • Glaasker E, Heuberger EHML, Konings WN& Poolman B (1998) Mechanism of osmotic activation of the quaternary ammonium compound transporter (QacT) of Lactobacillus plantarum. J. Bacteriol. 180: 5540–5546.

    Google Scholar 

  • Gottesman MM, Hrycyna CA, Schoenlein PV, German UA& Pastan I (1995) Genetic analysis of the multidrug transporter. Annu. Rev. Genet. 29: 606–649.

    Google Scholar 

  • Hagting A, Kunji ERS, Leenhouts KJ, Poolman B& Konings WN (1994) The di-and tripeptide transport protein of Lactococcus lactis: A new type of bacterial peptide transporters. J. Biol. Chem. 269: 11391–11399.

    Google Scholar 

  • Hanke ME& Koesler KK (1924) Studies on proteinogenous amines. J. Biol. Chem. 59: 835–855.

    Google Scholar 

  • Higuchi T, Hayashi H& Abe K (1993) Exchange of glutamate and β-aminobutyrate in a Lactobacillus strain. J. Bacteriol. 179: 3362–3364.

    Google Scholar 

  • Houtsma PC, Kusters BJM, de Wit JC, Rombouts FM & Zwietering (1994) Modelling growth of Listeria innocua as a function of lactate concentration. J. Food Microbiol. 24: 113–123.

    Google Scholar 

  • Jiang W, Hermolin J & Fillingame (2001) The preferred stoichiometry of c subunits in the rotary sector of Eschericha coli ATPase synthase is 10. Proc. Natl. Acad. Sci. U.S.A. 98: 237–241.

    Google Scholar 

  • Juillard V, Laan H, Kunji ERS, Jeronimus-Stratingh CM, Bruins AP& Konings WN (1995a) The extracellular P2-type proteinase of Lactococcus lactis hydrolyzes β-casein into more than one hundred different oligopeptides. J. Bacteriol. 177: 3472–3478.

    Google Scholar 

  • Juillard V, Le Bars D, Kunji ERS, Konings WN, Gripon JC& Richard J (1995b) Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl. Environ. Microbiol. 61: 3024–3030.

    Google Scholar 

  • Kaars Sypersteyn A (1970) Induction of cytochrome formation and stimulation of oxidative dissimination by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie van Leeuwenhoek 36: 335–348.

    Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49: 209–224.

    Google Scholar 

  • Kempler GM& McKay LL (1979) Characterisation of plasmid deoxyribonucleic acid in Streptococcus lactis subsp.diacetylactis: evidence for a plasmid-linked citrate utilization. Appl. Environ. Microbiol. 37: 316–323.

    Google Scholar 

  • Kobayashi H, Suzuki T& Unemoto T (1986) Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton-translocating ATPase. J. Biol. Chem. 261: 627–630.

    Google Scholar 

  • Konings WN (1985) Generation of metabolic energy by end-product efflux. Trends Biochem. Sci. 10: 317–319.

    Google Scholar 

  • Konings WN, Poolman B& Driessen AJM (1989) Bioenergetics of solute transport in lactococci. CRC Crit. Rev. Microbiol. 16: 419–476.

    Google Scholar 

  • Konings WN, Poolman B& Driessen AJM (1992) Can the excretion of metabolites by bacteria be manipulated? FEMS Microbiol. Rev. 88: 93–108.

    Google Scholar 

  • Konings WN, Lolkema JS, Bolhuis H, van Veen WH, Poolman B& Driessen AJM (1997) Antonie van Leeuwenhoek 71: 117–128.

    Google Scholar 

  • Konings WN& Otto R (1983) Energy transduction and solute transport in streptococci. Antonie van Leeuwenhoek. 49: 247–257.

    Google Scholar 

  • Konings WN, Lolkema JS& Poolman B (1995) The generation of metabolic energy by solute transport. Arch.Microbiol. 164: 235–242.

    Google Scholar 

  • Kunji ERS, Smid EJ, Plapp R, Poolman B& Konings WN (1993) Di-tripeptides and oligo peptides are taken up via distinct transport mechanisms in Lactococcus lactis. J. Bacteriol. 175: 2052–2059.

    Google Scholar 

  • Kunji ERS, Hagting A, de Vries CJ, Juillard V, Haandrikman A, Poolman B & Konings WN (1993) Transport of β-casein derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J. Biol. Chem. 270: 1569–1574.

    Google Scholar 

  • Kunji ERS, Mierau I, Hagting A, Poolman B& Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187–221.

    Google Scholar 

  • Kunji E.R.S., Gang G., Jeronimus-Strating C.M., Bruins A.P.& Konings W.N. (1998) Reconstruction of the proteolytic pathway of β-casein by Lactococcus lactis Mol. Microbiol. 27: 1107–1118.

    Google Scholar 

  • Kunkee RE (1991) Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microbiol. Rev. 88: 55–72.

    Google Scholar 

  • Lagerborg VA& Clapper WE (1952) Amino acid decarboxylases of lactic acid bacteria. J. Bacteriol. 63: 393–397

    Google Scholar 

  • Lewis K (1994) Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem. Sci. 19: 119–123.

    Google Scholar 

  • Lin JP, Schmitt P& Divies C (1991) Characterization of a citratenegative mutant of Leuconostoc mesenteroides: metabolic and plasmidic properties. Appl. Microbiol. Biotech. 34: 628–631.

    Google Scholar 

  • Lindsay MR, Webb RI, Strous M, Jetten MSM, Butler MK, Forde RJ&Fuerst JA Cell compartmentalisation in planctomycetes: novel types of structural organization for the bacterial cell. Arch. Microbiol. 175: 413–429.

  • Magni C, de Mendoza D, Konings WN& Lolkema JS (1999) Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH. J. Bacteriol. 181: 1451–1457.

    Google Scholar 

  • Maloney PC (1977) Obligatory coupling between proton entry and the synthesis of ATP by Streptococcus lactis. J. Bacteriol. 132: 564–575.

    Google Scholar 

  • Maloney PC, Ambudkar SV, Thomas J& Schiller L (1984) Phosphate/hexose-6-phosphate antiport in Streptococcus lactis. J. Bacteriol. 158: 238–245.

    Google Scholar 

  • Marty-Teysset C, Postma C, Lolkema JS, Schmitt P, Divies C& Konings WN (1996) Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides. J. Bacteriol. 178: 2178–2185.

    Google Scholar 

  • Marquis RE, Bender GR, Murray DR& Wong A (1987) Arginine deiminase system and bacterial adaptation to acid environment. Appl. Environ. Microbiol. 53: 198–200.

    Google Scholar 

  • Marshall VM (1987) Lactic acid bacteria: starters for flavour. FEMS Microbiol. Rev. 46: 327–336

    Google Scholar 

  • Michels PAM, Michels JPJ, Boonstra J& Konings WN (1979) Generation of electrochemical proton gradient in bacteria by the excretion of metabolic end products. FEMS Microbiol. Lett. 5: 357–364.

    Google Scholar 

  • Mitchell P (1966) Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, Cornwall, England.

    Google Scholar 

  • Molenaar D, Bolhuis H, Abee T, Poolman B& Konings WN (1992) The efflux of a fluorescent probe is catalyzed by an ATP-driven extrusion system in Lactococcus lactis. J. Bacteriol. 174: 3118–3124.

    Google Scholar 

  • Molenaar D, Bosscher JS ten Brink B, Driessen AJM& Konings WN (1993) Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 175: 2864–2870.

    Google Scholar 

  • Molenaar D, Hagting A, Alkema H, Driessen AJM& Konings WN (1993) Characterization and osmoregulatory role of uptake systems for proline and glycine-betaine in Lactococcus lactis. J. Bacteriol. 175: 5438–5444.

    Google Scholar 

  • Mundt JO (1982) The ecology of Streptococci. Microbial. Ecol. 8: 355–369.

    Google Scholar 

  • Monnet V, Le Bars D& Gripon J-C (1986) Specificity of a cell wall proteinase from Streptococcus lactis NCDO763 towards bovine β-casein. FEMS Microbiol. Lett. 36: 127–131.

    Google Scholar 

  • Otto R (1981) An ecophysiological study of starter streptococci. Ph.D. Thesis, University of Groningen

  • Otto R, Hugenholtz J, Konings WN & Veldkamp H (1980a) Increase of molar growth yield of Streptococcus cremoris for lactose as a consequence of lactate consumption by Pseudomonas stutzeri in mixed cultures. FEMS Microbiol. Lett. 9: 85–88.

    Google Scholar 

  • Otto R, Sonnenberg ASM, Veldkamp H& Konings WN (1980b) Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Proc. Natl. Acad. Sci. U.S.A. 77: 5502–5506.

    Google Scholar 

  • Otto R, Lageveen RG, Veldkamp H& Konings WN (1982) Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris. J. Bacteriol. 149: 733–738.

    Google Scholar 

  • Patchett RA, Kelly AF& Kroll RG (1994) Transport of glycine-betaine by Listeria monocytogenes. Arch.Microbiol. 162: 205–210.

    Google Scholar 

  • Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G& Teuber M (1997) Antibiotic resistance spread in food. Nature 389: 801–802.

    Google Scholar 

  • Peterkofsky A& Gadzar C (1979) Escherichia coli adenylate cyclase complex: Regulation by the proton electyrochemical gradient. Proc. Natl. Acad. Sci. U.S.A. 76: 1099–1103.

    Google Scholar 

  • Poolman B (1987) Energy transducing processes in growing and starving Lactococcus lactis. Ph.D. Thesis, University of Groningen.

  • Poolman B& Glaasker E (1989) Regulation of compatible solute accumulation in bacteria. Mol.Microbiol. 29: 397–407.

    Google Scholar 

  • Poolman B& Konings WN (1988) Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J. Bacteriol. 170: 700–707.

    Google Scholar 

  • Poolman B, Bosman B, Kiers J& Konings WN (1987a) Control of glycolysis by glyceraldehyde-3-phosphate dehydrogenase in Streptococcus cremoris and Streptococcus lactis. J. Bacteriol. 169: 5887–5890.

    Google Scholar 

  • Poolman B, Driessen AJM& Konings WN (1987b) Regulation of arginine/ornithine exchange and the arginine deiminase pathway in streptococci. J. Bacteriol. 169: 5597–5604.

    Google Scholar 

  • Poolman B, Driessen AJM& Konings WN (1987c) Regulation of solute transport in Streptococci by external and internal pH values. Microbiol. Rev. 51: 498–508.

    Google Scholar 

  • Poolman B, Hellingwerf KJ& Konings WN (1987d) Regulation of glutamate-glutamine transport by intracellular pH in Streptococcus lactis. J. Bacteriol. 169: 2272–2276.

    Google Scholar 

  • Poolman B, Nijssen RMJ& Konings WN (1987e) Dependence of Streptococcus lactis phosphate transport on internal phosphate concentration and internal pH. J. Bacteriol. 169: 5373–5378.

    Google Scholar 

  • Poolman B, Smid EJ& Konings WN (1987f) Kinetic properties of a phosphate-bond driven glutamate/glutamine transport in Streptococcus lactis and Streptococcus cremoris. J. Bacteriol. 169: 2755–2761.

    Google Scholar 

  • Poolman B, Smid EJ, Veldkamp H& Konings WN (1987g) Bioenergetic consequences of lactose starvation for continuously cultured Streptocococcus cremoris. J. Bacteriol. 169: 1460–1468.

    Google Scholar 

  • Poolman B, Driessen AJM&Konings WN (1988) Effects of the cytoplasmic pH on solute transport in bacteria. In: Whittenbury R, Gould GW, Banks JG&Board RG (Eds) Homeostatic Mechanisms in Micro-organisms (pp 117–129). Bath University Press.

  • Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP& Konings WN (1991) Malolactic fermentation: Electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J. Bacteriol. 173: 6030–6037.

    Google Scholar 

  • Poolman B, Kunji ERS, Hagting A, Juillard V& Konings WN (1995) The proteolytic pathway of Lactococcus lactis. J. Appl. Bacteriol. Symp. Suppl. 79: 65–75.

    Google Scholar 

  • Pritchard GG& Coolbear T (1993) The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol. Rev. 12: 179–206.

    Google Scholar 

  • Putman M, van Veen HW, Degener JE& Konings WN (2000a) Antibiotic resistance: era of the multidrug pump. Mol. Microbiol. 36: 772–774.

    Google Scholar 

  • Putman M, van Veen HW& Konings WN (2000b) Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64: 672–693.

    Google Scholar 

  • Putman M, van Veen HW, Degener JE& Konings WN (2001) The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. Microbiology 147: 2873–2880.

    Google Scholar 

  • Ramos A, Poolman B, Santos H, Lolkema JS& Konings WN (1994) Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. J. Bacteriol. 176: 4899–4905.

    Google Scholar 

  • Reid JR, Coolbear T, Pillidge CJ& Pritchard GG (1994) Specificity of hydrolysis of bovine β-casein by cell envelope-associated proteinases from Lactococcus lactis strains. Appl. Environ. Microbiol. 60: 801–806.

    Google Scholar 

  • Rice SL& Koehler PE (1976) Tyrosine and histidine decarboxylase activities of Pediococcus cerevisiae and Lactobacillus sp. the production of tyramine in fermented sausages. J. Milk Food Technol. 39: 166–169.

    Google Scholar 

  • Ritchey TW& Seeley H (1976) Distribution of cytochrome-like respiration in streptococci. J. Gen. Microbiol. 93: 195–203.

    Google Scholar 

  • Rodwell AW (1953) The occurrence and distribution of amino acid decarboxylases within the genus Lactobacillus. J. Gen. Microbiol. 8: 224–232

    Google Scholar 

  • Salema M, Poolman B, Lolkema JS, Louriero Dias MC& Konings WN (1994) Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos. Eur. J. Biochem. 225: 289–295.

    Google Scholar 

  • Sakamoto K, Margolles A, van Veen HW& Konings WN (2001) Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J. Bacteriol. 183: 5371–5375.

    Google Scholar 

  • Sami M, Yamahita H, Hirono T, Kadokura H, Kitamoto K, Yoda K& Yamasaki M (1997) Hop-resistant Lactobacillus brevis contains a novel plamid harboring a multidrug resistance-like gene. J. Ferment. Bioeng. 84: 1–6.

    Google Scholar 

  • Sami M, Suzuki K, Sakamoto K, Kadokura H, Kitamoto K, Yoda K (1998) A plasmid pRH45 of Lactobacillus brevis confers hop resistance. J. Gen. Appl. Microbiol. 44: 361–363.

    Google Scholar 

  • Sanz Y, Lanfermeijer FC, Renault P, Bolotin A, Konings WN& Poolman B (2001) Genetic and functional characterization of dpp genes encoding a dipeptide transport system in Lactococcus lactis. Arch. Microbiol. 175: 334–343.

    Google Scholar 

  • Shelef LA (1994) Antimicrobial effect of lactate: a review. J. Food Microbiol. 56: 2099–2103.

    Google Scholar 

  • Silver S& Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50: 753–789.

    Google Scholar 

  • Smid E. J. (1991) Physiology and Implications of peptide transport in Lactococci. Ph.D. Thesis, University of Groningen.

  • Smid EJ, Poolman B& Konings WN (1991) Casein utilization by lactococci. Appl. Environ. Microbiol. 57: 2447–2452.

    Google Scholar 

  • Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264: 388–393.

    Google Scholar 

  • Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA& Lewis K (2000) Synergy in a medical plant: antimicrobial action of berberine potentiated by 5"-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. U.S.A. 15: 1433–1437.

    Google Scholar 

  • Ten Brink B& Konings WN (1982) Electrochemical proton gradient and lactate concentration in Streptococcus cremoris cells grown in batch culture. J. Bacteriol. 152: 682–686.

    Google Scholar 

  • Ten Brink B., Otto R., Hansen U.P.& Konings W.N. (1985) Energy recycling by lactate efflux in growing and non-growing cells of Streptococcus cremoris. J. Bacteriol. 162: 383–390.

    Google Scholar 

  • Ten Brink B, Damink C, Joosten HMLJ& Huis in 't Veld J (1990) Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11: 3–84.

    Google Scholar 

  • Thomas TD& Batt RD (1968) Survival of Streptococcus lactis under starvation conditions. J. Gen. Microbiol. 50: 367–382.

    Google Scholar 

  • Thompson J (1978) In vivo regulation of glycolysis and characterization of sugar:phosphotransferase systems in Streptococcus lactis. J. Bacteriol. 136: 465–476.

    Google Scholar 

  • Thompson J (1979) Lactose metabolism in Streptoccus lactis: phosphorylation of galactose and glucose moieties in vivo. J. Bacteriol. 140: 774–785.

    Google Scholar 

  • Thompson J (1980) Galactose transport systems in Streptococcus lactis. J. Bacteriol. 144: 683–691.

    Google Scholar 

  • Thompson J& Chassy BM (1981) Uptake and metabolism of sucrose by Streptococcus lactis. J. Bacteriol. 147: 543–551.

    Google Scholar 

  • Thompson J, Chassy BM& Egan W (1985) Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose–phosphotransferase activities. J. Bacteriol. 162: 217–223.

    Google Scholar 

  • Truong L&Poolman B (1987) unpublished

  • Van der Heide T& Poolman B (2000a) Glycine-betaine transport in Lactococcus lactis is osmotically regulated at the level of expression and translocation activity. J. Bacteriol. 182: 203–206.

    Google Scholar 

  • Van der Heide T& Poolman B (2000b) Osmoregulated ABC-transport system of Lactococcus lactis senses stress via changes in the physical state of the membrane Proc. Natl. Acad. Sci. U.S.A. 97: 7102–7106.

    Google Scholar 

  • Van der Heide T, Stuart MCA& Poolman B (2001) On the osmotic signal and osmosensing of an ABC transport system for glycine-betaine. EMBO J. 20: 7022–7032.

    Google Scholar 

  • Van der Rest M.E., Abee T., Molenaar D.& Konings W.N. (1991) Mechanism and Energetics of a citrate transport system of Klebsiella pneumoniae. Eur. J. Biochem. 195: 71–77.

    Google Scholar 

  • Van Veen HW& Konings WN (1997) Multidrug transporters from bacteria to man:similarities in structure and function. Semin. Cancer Biol. 8: 183–191.

    Google Scholar 

  • Van Veen HW& Konings WN (1998b) The ABC family of multidrug transporters in microorganisms. Biochim. Biophys. Acta 1365: 31–36.

    Google Scholar 

  • Van Veen HW, Venema K, Bolhuis H, Oussenko I, Kok J, Poolman B, Driessen AJM& Konings WN (1996) Multidrug resistance mediated by a bacterial homolog of the human drug transporter MDR1. Proc. Natl. Acad. Sci. U.S.A. 93: 10668–10672.

    Google Scholar 

  • Van Veen HW, Callaghan R, Soceneantu L, Sardini A, Konings WN& Higgins CF (1998) A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene. Nature 391: 291–295.

    Google Scholar 

  • Van Veen HW, Margoles A, Muller M, Higgins CF& Konings WN (2000) The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J. 19: 2503–2514.

    Google Scholar 

  • Van Veen HW, Putman M, Margolles A, Sakamoto K& Konings WN (1999) Structure function analysis of multidrug transporters in Lactococcus lactis. Biochim. Biophys. Acta 1461: 201–206.

    Google Scholar 

  • Van Veen HW, Higgins CF& Konings WN (2001) Multidrug transport by ATP binding cassette transporters: a proposed two-cylinder engine mechanism. Res.Microbiol. 152: 365–374.

    Google Scholar 

  • Veenhoff LM, Heuberger EHML& Poolman B (2001). The lactose transport protein in a cooperative dimer with two sugar translocation pathways. EMBO J. 20: 3056–3062.

    Google Scholar 

  • Visser S, Exterkate FA, Slangen CJ& de Veer GJCM (1986) Comparitive study of action of cell wall preoteinases from various strains of Streptococcus cremoris and βs1-, β-and β-casein. Appl. Environ. Microbiol. 52: 1162–1166.

    Google Scholar 

  • Visser S, Slangen CJ, Robben AJPM, Heerma WD& Haverkamp J (1994) Action of cell envelope proteinase (CEPIII-type) from Lactococcus lactis subsp. cremoris AM1 on bovine β-casein. Appl. Microbiol. Biotechnol. 41: 644–651.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konings, W.N. The cell membrane and the struggle for life of lactic acid bacteria. Antonie Van Leeuwenhoek 82, 3–27 (2002). https://doi.org/10.1023/A:1020604203977

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020604203977

Navigation