Skip to main content
Log in

Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In the past few decades, extensive research has been conducted on the magnetoelectric (ME) effect in single phase and composite materials. Dielectric polarization of a material under a magnetic field or an induced magnetization under an electric field requires the simultaneous presence of long-range ordering of magnetic moments and electric dipoles. Single phase materials suffer from the drawback that the ME effect is considerably weak even at low temperatures, limiting their applicability in practical devices. Better alternatives are ME composites that have large magnitudes of the ME voltage coefficient. The composites exploit the product property of the materials. The ME effect can be realized using composites consisting of individual piezomagnetic and piezoelectric phases or individual magnetostrictive and piezoelectric phases. In the past few years, our group has done extensive research on ME materials for magnetic field sensing applications and current measurement probes for high-power electric transmission systems. In this review article, we mainly emphasize our investigations of ME particulate composites and laminate composites and summarize the important results. The data reported in the literature are also compared for clarity. Based on these results, we establish the fact that magnetoelectric laminate composites (MLCs) made from the giant magnetostrictive material, Terfenol-D, and relaxor-based piezocrystals are far superior to the other contenders. The large ME voltage coefficient in MLCs was obtained because of the high piezoelectric voltage coefficient of the piezocrystals and large elastic compliances. In addition, an optimized thickness ratio between the piezoelectric and magnetostrictive phases and the direction of the magnetostriction also influence the magnitude of the ME coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Curie, J. Physique 3e series, 3, 393 (1894).

    Google Scholar 

  2. L.D. Landau and E. Lifshitz, Electrodynamics of Continuous Media (Addison-Wesley: Translation of a Russian edition of 1958), (1960).

  3. I.E. Dzyaloshinskii, Sov. Phys.—JETP, 37, 628 (1960).

    Google Scholar 

  4. D.N. Astrov, Sov. Phys.—JETP, 11, 708 (1960).

    Google Scholar 

  5. G.T. Rado and V.J. Folen, Phys. Rev. Lett., 7, 310 (1961).

    Google Scholar 

  6. H. Schmid, Bull. Mater. Sci., 17, 1411 (1994).

    Google Scholar 

  7. G. Smolenskii and V.A. Ioffe, Colloque International du Magnetisme, Communication No. 71 (1958).

  8. D.N. Astrov, B.I. Al'shin, R.V. Zhorin, and L.A. Drobyshev, Sov. Phys.—JETP, 28, 1123 (1968).

    Google Scholar 

  9. T.H. O'Dell, Electronics and Power, 11, 266 (1965).

    Google Scholar 

  10. D.N. Astrov, Soviet Phys.—JETP, 13, 729 (1961).

    Google Scholar 

  11. R.M. Hornreich, Sol. State Comm., 7, 1081 (1969).

    Google Scholar 

  12. R.M. Hornreich, J. Appl. Phys., 41, 950 (1970).

    Google Scholar 

  13. E. Fischer, G. Gorodetsky, and R.M. Hornreich, Sol. State Comm., 10, 1127 (1972).

    Google Scholar 

  14. V.J. Folen, G.T. Rado, and E.W. Stalder, Phys. Rev. Lett., 6, 607 (1961).

    Google Scholar 

  15. S. Foner and M. Hanabusa, J. Appl. Phys., 34, 1246 (1963).

    Google Scholar 

  16. L.M. Holmes, L.G. van Uitert, and G.W. Hull, Sol. State Comm., 9, 1373 (1971).

    Google Scholar 

  17. R.M. Hornreich, IEEE Trans. Magn., MAG-8, 582 (1972).

    Google Scholar 

  18. R.M. Hornreich, in Proc. of Symposium on Magnetoelectric Interaction Phenomena in Crystals, Seattle, May 21–24, 1973, edited by A. Freeman and A. Schmid (Gordon and Breach Science Publishers, New York, 1975), p. 211.

    Google Scholar 

  19. R.M. Hornreich and S. Shtrikman, Phys. Rev., 161, 506 (1967).

    Google Scholar 

  20. T.J. Martin and J.C. Anderson, Phys. Lett., 11, 109 (1964).

    Google Scholar 

  21. T.J. Martin and J.C. Anderson, IEEE Trans. Magn.,MAG-2, 446 (1966).

    Google Scholar 

  22. M. Mercier, in Proc. of Symposium on Magnetoelectric Interaction Phenomena in Crystals, Seattle, May 21–24, 1973, edited by A. Freeman and A. Schmid (Gordon and Breach Science Publishers, New York, 1975), p. 99.

    Google Scholar 

  23. S. Alexander and S. Shtrikman, Sol. State Comm., 4, 115 (1966).

    Google Scholar 

  24. R.M. Hornreich, IEEE Trans. Magn., MAG-8, 582 (1972).

    Google Scholar 

  25. R. M. Hornreich and S. Shtrikman, Phys. Rev., 161, 506 (1967).

    Google Scholar 

  26. G.A. Smolenskii and I.E. Chupis, Problems in Solid State Physics (Mir Publishers, Moscow, 1984).

    Google Scholar 

  27. I.H. Ismailzade, V.I. Nesternko, F.A. Mirishli, and P.G. Rustamov, Phys. Status Solidi, 57, 99 (1980).

    Google Scholar 

  28. R.S. Singh, T. Bhimasankaram, G.S. Kumar, and S.V. Suryanarayana, Solid State Comm., 91, 567 (1994).

    Google Scholar 

  29. J. Van Suchetelene, Philips Res. Rep., 27, 28 (1972).

    Google Scholar 

  30. J. van den Boomgaard and R.A.J. Born, J. Mater. Sci., 13, 1538 (1978).

    Google Scholar 

  31. J. van den Boomgaard, A.M.J.G. Van Run, and J. Van Suchetelene, Ferroelectrics, 10, 295 (1976).

    Google Scholar 

  32. J. van den Boomgaard, D.R. Terrell, R.A.J. Born, and H.F.J.I. Giller, J. Mater. Sci., 9, 1705 (1974).

    Google Scholar 

  33. A.M.J.G. Van Run, D.R. Terrell, and J.H. Scholing, J. Mater. Sci., 9, 1710 (1974).

    Google Scholar 

  34. T.G. Lupeiko, I.V. Lisnevskaya, M.D. Chkheidze, and B.I. Zvyagintsev, Inorg. Mater., 31, 1139 (1995).

    Google Scholar 

  35. T.G. Lupeiko, I.B. Lopatina, S.S. Lopatin, and I.P. Getman, Neorg. Mater., 27, 2394 (1991).

    Google Scholar 

  36. T.G. Lupeiko, I.B. Lopatina, I.V. Kozyrev, and L.A. Derbaremdiker, Neorg. Mater., 28, 632 (1991).

    Google Scholar 

  37. Yu. I. Bokhan and V.M. Laletin, Inorg. Mater., 32, 634 (1996).

    Google Scholar 

  38. T.G. Lupeiko, S.S. Lopatin, I.V. Lisnevskaya, and B.I. Zvyagintsev, Inorg. Mater. 30, 1353 (1994).

    Google Scholar 

  39. R.E. Newnham, Ferroelectrics, 68(1/4) 1 (1986).

    Google Scholar 

  40. K. Uchino, Ferroelectric Devices (Marcel Dekker, NewYork, 2000), p. 255.

    Google Scholar 

  41. J. Ryu, S. Priya, K. Uchino, H.-E. Kim, and D. Viehland, J. Am. Ceram. Soc. (2002).

  42. J. Ryu, Ph.D Thesis, Seoul National University, Seoul, Korea, Aug. 2001.

    Google Scholar 

  43. I. Bunget and V. Reatchi, Phys. Stat. Sol., 63, K55 (1981).

    Google Scholar 

  44. A.S. Zubkov, Elektrichestvo, 10, 77 (1978).

    Google Scholar 

  45. G. Harshe, J.P. Dougherty, and R.E. Newnham, Int. J. Appl. Electromagnetics in Mat., 4, 161 (1993)

    Google Scholar 

  46. J. Ryu, A. Vázquez Carazo, K. Uchino, and H.-E. Kim, J. Electroceramics, 7, 17 (2001).

    Google Scholar 

  47. C.A. Randall, N. Kim, J.-P. Kucera, W. Cao, and T.R. Shrout, J. Am. Ceram. Soc., 81, 677 (1998).

    Google Scholar 

  48. A. Vaázquez Carazo, Ph.D Thesis, Universidad Politècnica do Catalunya, Spain, April 2000.

    Google Scholar 

  49. B.D.H. Tellegen, Philips Res. Rep., 3, 81 (1948).

    Google Scholar 

  50. H.W. Katz, Solid State Magnetic and Dielectric Devices (John Wiley and Sons, New York, 1959), p. 172.

    Google Scholar 

  51. V.E. Wood and A.E. Austin, in Proc. of Symposium on Magnetoelectric Interaction Phenomena in Crystals, Seattle, May 21–24, 1973, edited by A. Freeman and A. Schmid (Gordon and Breach Science Publishers, New York, 1975), p. 181.

    Google Scholar 

  52. J. Ryu, A. Vaázquez Carazo, K. Uchino, and H.-E. Kim, Jpn. J. Appl. Phys., 40, 4948 (2001).

    Google Scholar 

  53. J. Ryu, S. Priya, A. Vaázquez Carazo, K. Uchino, and H.-E. Kim, J. Am. Ceram. Soc., 84, 2905 (2001).

    Google Scholar 

  54. A.V. Virkar, J.L. Huang, and R.A. Cutler, J. Am. Ceram. Soc., 70, 164 (1987).

    Google Scholar 

  55. G. Engdahl, Handbook of Giant Magnetostrictive Materials (Academic Press, San Diego, CA, 2000), p. 127.

    Google Scholar 

  56. G. Engdahl, Handbook of Giant Magnetostrictive Materials (Academic Press, San Diego, CA, 2000), p. 175.

    Google Scholar 

  57. J. Kuwata, K. Uchino, and S. Nomura, Ferroelectrics, 37, 579 (1981).

    Google Scholar 

  58. J. Kuwata, K. Uchino, and S. Nomura, Jpn. J. Appl. Phys., 21, 1298 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, J., Priya, S., Uchino, K. et al. Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials. Journal of Electroceramics 8, 107–119 (2002). https://doi.org/10.1023/A:1020599728432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020599728432

Navigation