Skip to main content
Log in

Regulation of Energy Transduction and Electron Transfer in Cytochrome c Oxidase by Adenine Nucleotides

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cytochrome c oxidase from bovine heart contains seven high-affinity binding sites for ATP or ADP and three additional only for ADP. One binding site for ATP or ADP, located at the matrix-oriented domain of the heart-type subunit VIaH, increases the H+/e stoichiometry of the enzyme from heart or skeletal muscle from 0.5 to 1.0 when bound ATP is exchanged by ADP. Two further binding sites for ATP or ADP, located at the cytosolic and the matrix domain of subunit IV, increases the K M for Cytochrome c and inhibit the respiratory activity at high ATP/ADP ratios, respectively. We propose that thermogenesis in mammals is related to subunit VIaL of cytochrome c oxidase with a H+/e stoichiometry of 0.5 compared to 1.0 in the enzyme from bacteria or ectotherm animals. This hypothesis is supported by the lack of subunit VIa isoforms in cytochrome c oxidase from fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Allen, L. A., Zhao, X.-J., Caughey, W., and Poyton, R. O. (1995). “Isoforms of yeast cytochrome c oxidase subunit V affect the binuclear reaction center and alter the kinetic interaction with the isoforms of yeast cytochrome c,” J. Biol. Chem. 270, 110-118.

    PubMed  Google Scholar 

  • Anthony, G., Stroh, A., Lottspeich, F., and Kadenbach, B. (1990). “Different isozymes of cytochrome c oxidase are expressed in bovine smooth muscle and skeletal or heart muscle,” FEBS Lett. 277, 97-100.

    PubMed  Google Scholar 

  • Anthony, G., Reimann, A., and Kadenbach, B. (1993). “Tissue-specific regulation of bovine heart cytochrome c oxidase by ADP via interaction with subunit VIa,” Proc. Natl. Acad. Sci. USA 90, 1652-1656.

    PubMed  Google Scholar 

  • Arnold, S., and Kadenbach, B. (1997). “Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome c oxidase,” Eur. J. Biochem., 249, 350-354.

    PubMed  Google Scholar 

  • Arnold, S., Lee, I., Kim, M. J., Song, E., Linder, D., Lottspeich, F., and Kadenbach, B. (1997). “The subunit structure of cytochrome c oxidase from tuna heart and liver,” Eur. J. Biochem., 248, 99-103.

    PubMed  Google Scholar 

  • Bisson, R., and Schiavo, G. (1986). “Two different forms of cytochrome c oxidase can be purified from slime mold Dictyostelium discoideum,” J. Biol. Chem., 4373-4376.

  • Bisson, R., Schiavo, G., and Montecucco, C. (1987). “ATP induces conformational changes in mitochondrial cytochrome c oxidase,” J. Biol. Chem. 262, 5992-5998.

    PubMed  Google Scholar 

  • Bisson, R., Vettore, S., Aratri, E., and Sandonà, D. (1997). “Subunit change in cytochrome c oxidase: identification of the oxygen switch in Dictyostelium,” EMBO J. 16, 739-749.

    PubMed  Google Scholar 

  • Bolli, R., Nalecz, K. A., and Azzi, A. (1985). “The interconversion between monomeric and dimeric bovine heart cytochrome c oxidase,” Biochimie 67, 119-128.

    PubMed  Google Scholar 

  • Bonne, G., Seibel, P., Possekel, S., Marsac, C., and Kadenbach, B. (1993). “Expression of human cytochrome c oxidase subunits during fetal development,” Eur. J. Biochem. 217, 1099-1107.

    PubMed  Google Scholar 

  • Capaldi, R. O. (1990). “Structure and function of cytochrome c oxidase,” Annu. Rev. Biochem. 59, 569-596.

    PubMed  Google Scholar 

  • Capaldi, R. A., Zhang, Y.-Z., Rizzuto, R., Sandonà, D., Schiavo, G., and Bisson, R. (1990). “The oxygen-regulated subunits of cytochrome c oxidase in Dictyostelium discoideum derive from a common ancestor, “FEBS Lett. 261, 158-160.

    PubMed  Google Scholar 

  • Chepuri, V., Lemieux, L., Au, D. C.-T., and Gennis, R. B. (1990). “The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichiacoli and the aa3-type family of cytochrome c oxidases,” J. Biol. Chem. 265, 11185-11192.

    PubMed  Google Scholar 

  • Cumsky, M. G., Trueblood, C. E., Ko, C., and Poyton, R. O. (1987). “Structural analysis of two genes encoding divergent forms of yeast cytochrome c oxidase subunit V,” Mol. Cell. Biol. 7, 3511-3519.

    PubMed  Google Scholar 

  • Exner, S. (1997). Dissertation, Fachbereich Chemie, Philipps-Universität, Marburg.

    Google Scholar 

  • Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1976). “Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase,” J.Biol. Chem. 251, 1104-1115.

    PubMed  Google Scholar 

  • Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1978). “Definition of cytochrome c binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase,” J. Biol. Chem. 253, 149-159.

    PubMed  Google Scholar 

  • Frank, V. and Kadenbach, B. (1996). Regulation of the H+/e stoichiometry of cytochrome c oxidase from bovine heart by intraliposomal ATP/ADP ratios,” FEBS Lett. 382, 121-124.

    PubMed  Google Scholar 

  • Freund, R., and Kadenbach, B. (1994). “Tissue-specific isoforms for subunit Vb and VIIa were identified in cytochrome c oxidase from rainbow trout,” Eur. J. Biochem. 221, 1111-1116.

    PubMed  Google Scholar 

  • From, A. H. L., Zimmer, S. D., Michurski, S. P., Mohanakrishnan, P., Ulstad, V. K., Thoma, W. J., and Ugurbil, K. (1990). “Regulation of the oxidative phosphorylation rate in the intact cell,” Biochemistry 29, 3731-3743.

    PubMed  Google Scholar 

  • Geier, B. M., Schägger, H., Ortwein, C., Link, T. A., Hagen, W. R., Brandt, U., and von Jagow, G. (1994). “Kinetic properties and ligand binding of the eleven-subunit cytochrome c oxidase from Saccharomyzes cerevisiae isolated with a novel large-scale purification method,” Eur. J. Biochem. 227, 296-302.

    Google Scholar 

  • Grossman, L. I., and Lomax, M. I. (1997). “Nuclear genes for cytochrome c oxidase,” Biochim. Biophys. Acta 1352, 174-192.

    PubMed  Google Scholar 

  • Hakvoort, T. B. M., Moolenaar, K., Lankvelt, A. H. M., Singorgo, K. M. C., Dekker, H. L., and Muijsers, A. O. (1987). “Separation, stability and kinetics of monomeric and dimeric bovine heart cytochrome c oxidase,” Biochim. Biophys. Acta 894, 347-354.

    PubMed  Google Scholar 

  • Hüttemann, M., Exner, S., Arnold, S., Lottspeich, F., and Kadenbach, B. (1997). “The cDNA sequences of cytochrome c oxidase subunit VIa from carp and rainbow trout suggest the absence of isoforms,” Biochim. Biophys. Acta 1319, 14-18.

    PubMed  Google Scholar 

  • Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995). “Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans,” Nature 376, 660-669.

    PubMed  Google Scholar 

  • Kadenbach, B. (1983). “Structure and evolution of the “Atmungsferment” cytochrome c oxidase,” Angew. Chem. Int. Ed. Engl. 22, 275-283.

    Google Scholar 

  • Kadenbach, B. (1986). “Mini Review. Regulation of respiration and ATP synthesis in higher organisms: Hypothesis,” J. Bioenerg. Biomembr. 18, 39-54.

    PubMed  Google Scholar 

  • Kadenbach, B., and Reimann, A. (1992). in: “Molecular Mechanisms in Bioenergetics,” New Comprehensive Biochemistry (Ernster, L. ed.), Elsevier, Amsterdam, pp. 241-263.

    Google Scholar 

  • Kadenbach, B., Mende, P., Kolbe, H. V. J., Stipani, I., and Palmieri, F. (1982). “The mitochondrial phosphate carrier has an essential requirement for cardiolipin,” FEBS Lett. 139, 109-112.

    PubMed  Google Scholar 

  • Kadenbach, B., Stroh, A., Ungibauer, M., Kuhn-Nentwig, L., Büge, U., and Jarausch, J. (1986). “Isozymes of cytochrome c oxidase: characterization and isolation from different tissues,” Methods Enzymol. 126, 32-45.

    PubMed  Google Scholar 

  • Kadenbach, B., Kuhn-Nentwig, L., and Büge, U. (1987). “Evolution of a regulatory enzyme: cytochrome c oxidase (complex IV),” Curr. Top. Bioenerg. 15, 113-161.

    Google Scholar 

  • Kadenbach, B., Stroh, A., Becker, A., Eckerskorn, C., and Lottspeich, F. (1990). “Tissue-and species-specific expression of cytochrome c oxidase isozymes in vertebrates,” Biochim. Biophys. Acta 1015, 368-372.

    PubMed  Google Scholar 

  • Kadenbach, B., Barth, J., Akgün, R., Freund, R., Linder, D., and Possekel, S. (1995). “Regulation of mitochondrial energy generation in health and disease,” Biochim. Biophys. Acta 1271, 103-109.

    PubMed  Google Scholar 

  • Kadenbach, B., Frank, V., Belyanovitch, L., Linder, D., and Arnold, S. (1997). “Tissue-specific expression of cytochrome c oxidase isoforms and role in nonshivering thermogenesis,” In: Frontiers of Cellular Bioenergetics: Molecular Biology, Biochemistry, and Pathophysiology (Papa, S., Guerrieri, F., and Tager, J.M., eds.), Plenum Press, New York, in press.

    Google Scholar 

  • Linder, D., Freund, R., and Kadenbach, B. (1995). “Species-specific expression of cytochrome c oxidase isozymes,” Comp. Biochem. Physiol. 112B, 461-469.

    Google Scholar 

  • Napiwotzki, J., Shinzawa-Itoh, K., Yoshikawa, S., and Kadenbach, B. (1997) “ATP and ADP bind to cytochrome c oxidase and regulate its activity,” Biol. Chem., 378, 1013-1021.

    PubMed  Google Scholar 

  • Napiwotzki, J. and Kadenbach, B. (1998). Extramitochrondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol. Chem. 379, 335-339.

    PubMed  Google Scholar 

  • Osheroff, N., Brautigan, D. L., and Margoliash, E. (1980). “Mapping of anion binding sites on cytochrome c by differential chemical modifications of lysine residues,” Proc. Natl. Acad. Sci. USA 77, 4439-4443.

    PubMed  Google Scholar 

  • Palmieri, F., Indiveri, C., Bisaccia, F., and Krämer, R. (1993). “Functional properties of purified and reconstituted mitochondrial metabolite carriers,” J. Bioenerg. Biomembr. 25, 525-535.

    PubMed  Google Scholar 

  • Parsons, W. J., Williams, R. S., Shelton, J. M., Luo, Y., Kessler, D. J., and Richardson, J. A. (1996). “Developmental regulation of cytochrome oxidase subunit VIa isoforms in cardiac and skeletal muscle,” Am. J. Physiol. 270 (Heart Circ. Physiol. 39): H567-H574.

    PubMed  Google Scholar 

  • Poyton, R. O., Trueblood, C. E., Wright, R. M., and Farrell, L. E. (1988). “Expression and function of cytochrome c subunit isologues. Modulators of cellular energy production?” Ann. N.Y. Acad. Sci. 550, 289-307.

    PubMed  Google Scholar 

  • Reimann, A., Hüther, F.-J., Berden, J. A., and Kadenbach, B. (1988). “Anions induce conformational changes and influence the activity and photoaffinity-labelling by 8-azido-ATP of isolated cytochrome c oxidase,” Biochem. J. 254, 723-730.

    PubMed  Google Scholar 

  • Rieger, T., Napiwotzki, J., and Kadenbach, B. (1995). “On the number of nucleotide binding sites in cytochrome c oxidase,” Biochem. Biophys. Res. Commun. 217, 34-40.

    PubMed  Google Scholar 

  • Rohdich, F., and Kadenbach, B. (1993). “Tissue-specific regulation of cytochrome c oxidase efficiency by nucleotides,” Biochemistry 32, 8499-8503.

    PubMed  Google Scholar 

  • Saccone, C., Pesole, G., and Kadenbach, B. (1991). “Evolutionary analysis of the nucleus-encoded subunits of mammalian cytochrome c oxidase,” Eur. J. Biochem. 195, 151-156.

    PubMed  Google Scholar 

  • Saraste, M. (1990). “Structural features of cytochrome oxidase,” Quart. Rev. Biophys. 23, 331-366.

    Google Scholar 

  • Schneyder, B., Mell, O., Anthony, G., and Kadenbach, B. (1991). “Cross reactivity of monoclonal antibodies and cDNA hybridization suggest evolutionary relationships between subunits VIIa and VIIb,” Eur. J. Biochem. 198, 85-92.

    PubMed  Google Scholar 

  • Schwenke, W. B., Soboll, S., Seitz, H. J., and Sies, H. (1981). “Mitochondrial and cytosolic ATP/ADP ratios in rat liver in vivo,” Biochem. J. 200, 405-408.

    PubMed  Google Scholar 

  • Segade, F., Hurlé, B., Claudio, E., Ramos, S., and Lazo, P. S. (1996). “Identification of an additional member of the cytochrome c oxidase subunit VIIa family of proteins,” J. Biol. Chem. 271, 12343-12349.

    PubMed  Google Scholar 

  • Suarez, M. D., Revzin, A., Natlock, R., Kemper, E. S., Thompson, D.A., and Ferguson-Miller, S. (1984). “The functional and physical form of mammalian cytochrome c oxidase determined by gel filtration, radiation inactivation, and sedimentation equilibrium analysis,” J. Biol. Chem. 259, 13791-13799.

    PubMed  Google Scholar 

  • Taanman, J.-W., Turina, P., and Capaldi, R.A. (1994). “Regulation of cytochrome c oxidase by interaction of ATP at two binding sites, one on subunit VIa,” Biochemistry 33, 11833-11841.

    PubMed  Google Scholar 

  • Trumpower, B.L., and Gennis, R.B. (1994). “Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation,” Anna. Rev. Biochem. 63,675-716.

    Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1995). “Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å,” Science 269, 1069-1074.

    PubMed  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996). “The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å,” Science 272, 1136-1144.

    PubMed  Google Scholar 

  • Veech, R. L., Lawson, J. W. R., Cornell, N. W., and Krebs, H. A. (1979) “Cytosolic phosphorylation potential,” J. Biol. Chem. 254, 6538-6547.

    PubMed  Google Scholar 

  • Waterland, R. A., Basu, A., Chance, B., and Poyton, R. O. (1991). “The isoforms of yeast cytochrome c oxidase subunit V alter the in vivo kinetic properties of the holoenzyme,” J. Biol. Chem. 266, 4180-4186.

    PubMed  Google Scholar 

  • Weishaupt, A., and Kadenbach, B. (1992). “Selective removal of subunit VIb increases the activity of cytochrome c oxidase,” Biochemistry 31, 11477-11481.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadenbach, B., Napiwotzki, J., Frank, V. et al. Regulation of Energy Transduction and Electron Transfer in Cytochrome c Oxidase by Adenine Nucleotides. J Bioenerg Biomembr 30, 25–33 (1998). https://doi.org/10.1023/A:1020599209468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020599209468

Navigation