Ecotoxicology

, Volume 11, Issue 5, pp 311–321 | Cite as

Application of a Sediment Quality Triad and Different Statistical Approaches (Hasse Diagrams and Fuzzy Logic) for the Comparative Evaluation of Small Streams

  • Henner Hollert
  • Susanne Heise
  • Stefan Pudenz
  • Rainer Brüggemann
  • Wolfgang Ahlf
  • Thomas Braunbeck

Abstract

In order to evaluate the ecotoxicological contamination of 12 aquatic sites in streams within the catch ment area of the Neckar River, a sediment quality triad (SQT) approach was applied. In contrast to Chapman's original triad approach, not only sediments, but also surface waters were examined. In brief, to obtain a com prehensive insight into the potential ecotoxicological hazard, both acute toxicity and more specific effects such as mutagenic, genotoxic, teratogenic, dioxin- and estrogen-like responses were recorded. Different statistical methods (ranking, cluster analyses, Hasse diagram techniques, and fuzzy logic) for the evaluation and presentation of the SQT data were compared with respect to the needs of environmental decision-making. Results document advan tages and disadvantages of the methods applied for the evaluation and classification of data within the complex data matrixes. The ranking procedure presented as well as the Hasse diagram technique seem to be suitable tools to elucidate the pattern of the ecotoxicological load. However, these classification methods require expert knowledge to interpret the ranking results with respect to decision-making in environmental sciences and policy. In contrast, fuzzy logic allows both to develop site-specific expert systems in order to assess the ecotoxicological burden and to give insight into the pattern of the contamination.

sediment quality triad toxicity integrated analyses Hasse diagrams fuzzy logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berbner, T., Rahman, N. and Braunbeck, T. (1999). Induction of P450 1A and DNA damage in isolated rainbow trout (Oncorhynchus mykiss ) hepatocytes by 2,3,7,8-tetrachlorodibenzo-p -dioxin. Biomarkers 4 , 214–28.Google Scholar
  2. Braukmann, U. and Pinter, I. (1997). Integrierte Ökologische Fließgewässerbewertung—Strategiepapier. Acta Hydrochim. Hydrobiol. 25 , 113–27.Google Scholar
  3. Brüggemann, R. and Halfon, E. (1997). Comparative analysis of nearshore contaminated sites in Lake Ontario: ranking for environmental hazard. J. Environ. Sci. Health 32 , 277–93.Google Scholar
  4. Brüggemann, R., Münzer, B. and Halfon, E. (1994). An algebraical tool to compare ecosystems with respect to their pollution—the german river Elbe as an example. Chemosphere 28 , 863–72.Google Scholar
  5. Brüggemann, R., Oberemm, A. and Steinberg, C. (1997). Ranking of aquatic effect tests using Hasse diagrams. Toxicol. Environ. Chem. 16 , 125–39.Google Scholar
  6. Brüggemann, R., Voigt, K., Kaune, A., Pudenz, S., Komoßa, D. and Friedrich, J. (1998). Vergleichende ökologische Bewertung von Regionen in Baden-Württemberg . Neuherberg: GSF-Bericht 20/98, GSF.Google Scholar
  7. Bühl, A. and Zöfel, P. (1995). SPSS für Windows Version 6.1—Praxisorientierte Einführung in die moderne Datenanalyse . Bonn, Paris: Addison-Wesley Publishing Company.Google Scholar
  8. Burton, G.A. (1991). Assessing the toxicity of freshwater sediments. Environ. Toxicol. Chem. 10 , 1585–627.Google Scholar
  9. Canfield, T.J., Kemble, N.E., Brumbaugh, W.G., Dwyer, F.J., Ingersoll, C.G. and Fairchild, J.F. (1994). Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork River, Montana. Environ. Toxicol. Chem. 13 , 1999–2012.Google Scholar
  10. Carmargo, J.A. (1990). Performance of a new ecotoxicological index to assess environmental impacts on freshwater communities. Bull. Environ. Contam. Toxicol. 44 , 529–34.Google Scholar
  11. Carr, R.S., Chapman, D.C., Howard, C.L. and Biedenbach, J.M. (1996a). Sediment quality triad assessment survey of the Galveston Bay, Texas system. Ecotoxicology 5 , 341–64.Google Scholar
  12. Carr, R.S., Long, E.R., Windom, H.L., Chapman, D.C., Thursby, G., Sloane, G.M. and Wolfe, D.A. (1996b). Sediment quality assessment studies of Tampa Bay, Florida. Environ. Toxicol. Chem. 15 , 1218–31.Google Scholar
  13. Chapman, P. (1992). Pollution status of North Sea sediments—an international integrative study. In V. Dethlefsen and M. Carr (eds). Biological Effects of Contaminants in the North Sea , pp. 313–22. Oldendorf: Inter-Research, Mar. Ecol. Prog. Ser, Vol. 91.Google Scholar
  14. Chapman, P.M. (1990). The sediment quality triad approach to determine pollution-induced degradation. Sci. Tot. Environ. 97/98 , 815–25.Google Scholar
  15. Chapman, P.M. (1996). Presentation and interpretation of sediment quality triad data. Ecotoxicology 5 , 327–39.Google Scholar
  16. Chapman, P.M. (2000). The sediment quality triad: then, now and tomorrow. Int. J. Environ. Pollut. 13 , 351–56.Google Scholar
  17. Chapman, P.M., Power, E.A. and Burton, G.A. (1992). Integrative assessments in aquatic ecosystems. In G.A. Burton (ed.). Sediment Toxicity Assessment , pp. 313–40. Boca Raton: Lewis.Google Scholar
  18. de Jonge, J., Brils, J.M., Hendricks, A.J. and Ma, W.C. (1999). Ecological and ecotoxicological surveys of moderately contaminated floodplain ecosystems in The Netherlands. Aquat. Ecosys. Health Manag. 2 , 9–18.Google Scholar
  19. DelValls, T.A., Forja, J.M. and GomezParra, A. (1998a). The use of multivariate analysis to link sediment contamination and toxicity data to establish sediment quality guidelines: an example in the Gulf of Cadiz (Spain). Ciencias Marinas. June, 24 , 127–54.Google Scholar
  20. DelValls, T.A., Forja, J.M. and Gómez-Parra, A. (1998b). Integrative assessment of sediment quality in two littoral ecosystems from the gulf of Cádiz, Spain. Environ. Toxicol. Chem. 17 , 1073–84.Google Scholar
  21. DelValls, T.A., Forja, J.M., GonzalezMazo, E., GomezParra, A. and Blasco, J. (1998c). Determining contamination sources in marine sediments using multivariate analysis. Trac. Trends Anal. Chem. 17 , 181–92.Google Scholar
  22. Engwall, M., Broman, D., Ishaq, R., Näf, C., Zebühr, Y. and Brunström, B. (1996). Toxic potencies of lipophilic extracts from sediments and settling particulate matter (SPM) collected in a PCB contaminated river system. Environ. Toxicol. Chem. 15 , 213–22.Google Scholar
  23. Ensenbach, U. (1998). Embryonic development of fish—a model to assess the toxicity of sediments to vertebrates. Fresenius Environ. Bull. 7 , 531–38.Google Scholar
  24. Friedrich, M., Fränzle, O. and Salski, A. (1996). Fuzzy clustering of existing chemicals according to their ecotoxicological properties. Ecolog. Modelling 85 , 27–40.Google Scholar
  25. Gratzer, H. and Ahlf, W. (1999). Erarbeitung von Kriterien zur Ableitung von Qualitätszielen für Sedimente und Schwebstoffe. 171 pp. UBA-Texte, 44/99.Google Scholar
  26. Green, R.H. and Montagna, P. (1996). Implications for monitoring: study designs and interpretation of results. Can. J. Fish. Aquat. Sci. 53 , 2629–36.Google Scholar
  27. Heise, S., Maaß, V., Gratzer, H. and Ahlf, W. (2000). Ecotoxicolgical sediment classification—capabilities and potentials—presented for Elbe river sediments. Mitteilungen der Bundesanstalt für Gewässerkunde 22 , 96–104.Google Scholar
  28. Hendricks, A.J. (1994). Monitoring and estimating concentrations and effects of microcontaminants in the Rhine-delta: chemical analysis, biological laboratory assays and field observations. Water Sci. Technol. 3 , 223–32.Google Scholar
  29. Hollert, H., Dürr, M., Geier, V., Erdinger, L. and Braunbeck, T. (1999a). Ökotoxikologie in vitro : Gefährdungspotential von Neckarsedimenten. In J. Oehlmann and B. Markert (eds). Ökosystemare Ansätze in der Ökotoxikologie , pp. 444–62 Landsberg: Ecomed.Google Scholar
  30. Hollert, H., Dürr, M., Karaus, U., Siebert, I., Winn, N., Pawlowski, S., Islinger, M., Gratzer, H., Ahlf, W., Karrasch, H., Erdinger, L. and Braunbeck, T. (1999b). Identifizierung und Bewertung (öko)toxikologisch belasteter Gewässer in Baden-Württemberg. Berichte Umweltforschung des Forschungszentrums Karlsruhe: online under www.bwplus.fzk.de.Google Scholar
  31. Hollert, H., Dürr, M., Erdinger, L. and Braunbeck, T. (2000a). Cytotoxicity of settling particulate matter (SPM) and sediments of the Neckar river (Germany) during a winter flood. Environ. Toxicol. Chem. 19 , 528–34.Google Scholar
  32. Hollert, H., Dürr, M., Haag, I., Winn, N., Holtey-Weber, R., Kern, U., Färber, H., Westrich, B., Erdinger, L. and Braunbeck, T. (2000b). A combined hydraulic and in vitro bioassay approach to assess the risk of erosion and ecotoxicological implications of contaminated sediments in a lock-regulated river system. Mitteilungen der Bundesanstalt für Gewässerkunde 22 , 156–60.Google Scholar
  33. Hollert, H., Karaus, U., Dürr, M., Brack, W., Winn, N., Siebert, I., Wetterauer, B., Rudolf, M., Heise, S., Engwall, M., Erdinger, L., Ahlf, W. and Braunbeck, T. (2000c). Integrierte Sedimentuntersuchungen und Bioassay-dirigierte Fraktionierungen—Zwei Konzepte zur Identifizierung und Bewertung (öko)toxikologisch belasteter Gewässer in Baden-Württemberg (Ö 97 004). In F. Horsch, W.G. Filby, S. Gross and H. Krug (eds). Ökosystembelastungen durch zivilisationsbedingte Fremdstoffe , pp. 1–20. online under http://bwplusfzkde BWPLUS-Berichte.Google Scholar
  34. Hollert, H., Dürr, M., Olsman, H., Halldin, K., Bavel, B.V., Brack, W., Tysklind, M., Engwall, M. and Braunbeck, T. (2002). Biological and chemical determination of dioxin-like compounds in sediments by means of a sediment triad approach in the catchment area of the Neckar River. Ecotoxicology 11 , 323–36.Google Scholar
  35. ICES, 1999: Report of the Joint Meeting of the Working Group on Biological Effects of Contaminants and the Working Group on Statistical Aspects of Environmental Monitoring. ICES CM 1999/E:9 Ref.: ACME, The Hague.Google Scholar
  36. Islinger, M., Pawlowski, S., Hollert, H., Völkl, A. and Braunbeck, T. (1999). Measurement of vitellogenin-mRNA expression in primary cultures of rainbow trout hepatocytes in a non-radioactive dot blot/RNAse protection-assay. Sci. Tot. Environ. 15 , 109–22.Google Scholar
  37. Karbe, L., Mädler, K. and Janský, B. (1992). Biologische Effekte von Schadstoffen und toxisches Potential von Wasser und Sediment in Elbe und Nordsee—Statusseminar zum Biotox-Programm, p. 69. Berichte aus dem Zentrum für Meeres-und Klimaforschung der Universität Hamburg, 24 Hamburg.Google Scholar
  38. Karbe, L., Mädler, K. and Westendorf, J. (1994). Biologische Effekte von Schadstoffen und toxisches Potential von Wasser und Sediment in der Elbe und Nordsee (Biotox Elbe/Biotox Nordsee II)—Statusseminar am 7. January 1994, pp. 151 Berichte des Zentrums für Meeres-und Klimaforschung—Reihe E, 7, Hamburg.Google Scholar
  39. Leslie, H.A., Pavluk, T.I., de Vaate, A. and Kraak, M.H.S. (1999). Triad assessment of the impact of Cr Pollution on macrozoobenthos in the Chusovaya river (Russia). Annual European Meeting of the Society of Environmental Toxicology, Leipzig.Google Scholar
  40. Machala, M., Vonrácek, J., Bláha, L., Staffová, K., Kozubík, A., Hofmanová, J., Minksová, K., Cupr, P., Hrdlicka, A., Neca, J., Ulrich, R. and Holoubek, I. (1998). Cellular and biochemical indices for in vitro evaluation of toxicity of organic extracts from river sediments, Proceedings Annual meeting of SETAC-Europe, pp. 3C/P36, Bordeaux.Google Scholar
  41. Maron, D.M. and Ames, B.N. (1983). Revised methods for the Salmonella mutagenicity test. Mut. Res. 113 , 173–215.Google Scholar
  42. Pascoe, G.A., Blanchet, R.J., Linder, G., Palawski, D., Brumbaugh, E.G., Canfield, T.J., Kemble, N.E., Ingersoll, C.G., Farag, A. and DalSoglio, J.A. (1994). Characterization of ecological risks at the milltown resevoir-Clark Fork river sediments superfund site, Montana. Environ. Toxicol. Chem. 13 , 2043–58.Google Scholar
  43. Pudenz, S., Brüggemann, R., Luther, B., Kaune, A. and Kreims, K. (2000). An algebraic/graphical tool to compare ecosystems with respect to their pollution V: cluster analysis and Hasse diagrams. Chemosphere 40 , 1373–82.Google Scholar
  44. Pudenz, S., Brüggemann, R., Luther, B., Kaune, A. and Kreims, K. (2002). QSAR of ecotoxicological data on the basis of data-driven if-then-rules. Ecotoxicology 11 , 337–42.Google Scholar
  45. Rönnpagel, K., Janßen, E. and Ahlf, W. (1998). Asking for the indicator function of bioassays evaluating soil contamination: are bioassay results reasonable surrogates of effects on soil microflora? Chemosphere 36 , 1291–304.Google Scholar
  46. Salski, A., Fränzle, O. and Kandzia, P. (1996). Introduction—special issue fuzzy logic in ecological modelling. Ecolog. Modelling 85 , 1–2.Google Scholar
  47. Salski, A. and Kandzia, P. (1996). Fuzzy sets and fuzzy logic in ecological modelling. EcoSys 4 , 85–97.Google Scholar
  48. Shin, P.K.S. and Fong, K.Y.S. (1999). Mutiple discriminant analysis of marine sediment data. Mar. Poll. Bull. 39 , 285–94.Google Scholar
  49. Song, Y. and Müller, G. (1993). Freshwater sediments: sinks and sources of bromine. Naturwissenschaften 80 , 558–60.Google Scholar
  50. Staffova, K., Dusek, K., Kannan, K., Giesy, J.P., Holubek, I. and Machala, M. (1999). Evaluation of cytotoxicity, TCDD-like toxicity and estrogenicity of complex environmental mixtures, Proceedings of the Annual European Meeting of the Society of Environmental Toxicology , Leipzig 1f/004.Google Scholar
  51. Stebbing, A.R.D., Dethlefsen, V., Addison, R.F., Carr, M., Chapman, P.M., Cofino, W.P., Heip, C., Karbe, L. Moore, M.N. and Vethaak, A.D. (1992). Overall summary and some conclusions from the Bremerhaven Workshop. Mar. Ecol. Prog. Ser. 91 , 323–29.Google Scholar
  52. Zadeh, L.A. (1965). Fuzzy sets. Inform. Control 8 , 338–53.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Henner Hollert
    • 1
  • Susanne Heise
    • 2
  • Stefan Pudenz
    • 3
  • Rainer Brüggemann
    • 3
  • Wolfgang Ahlf
    • 2
  • Thomas Braunbeck
    • 1
  1. 1.Department of ZoologyUniversity of HeidelbergHeidelbergGermany;
  2. 2.Department of Environmental Science, TechnologyTechnical University Hamburg-HarburgHamburgGermany
  3. 3.Institute of Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations