Aoki, H., Science and Medical Applications of Hydroxyapatite, Tokyo: JAAS, 1991.
Google Scholar
Williams, D.F., Science and Applications of Biomaterials, Adv. Mater. Technol. Monitor., 1994, no. 2, pp. 1–38.
Google Scholar
Orlovskii, V.P., Sukhanova, G.E., Ezhova, Zh.A., and Rodicheva, G.V., Hydroxyapatite Bioceramics, Zh.Vses. Khim. O–va. im. D.I. Mendeleeva, 1991, vol. 36, no. 6, pp. 683–688.
Google Scholar
Hench, L.L., Bioceramics and the Future, Ceramics and Society, Vincenzini, P., Ed., Faenza: Techna, 1995, pp. 101–120.
Google Scholar
Tret'yakov, Yu.D. and Brylev, O.A., New Generation of Inorganic Functional Materials, Ross. Khim. Zh., 2000, vol. 7, no. 4, pp. 10–16.
Google Scholar
Doremus, R.H., Review Bioceramics, J. Mater. Sci., 1992, vol. 27, no. 3, pp. 285–296.
Google Scholar
Cao, W. and Hench, L.L., Bioactive Materials, J. Ceram. Int., 1996, vol. 22, no. 6, pp. 493–507.
Google Scholar
Sarkisov, P.D., Mikhailenko, N.Yu., Batrak, I.K., et al., Calcium Phosphate Glass-Ceramic Coatings for Titanium Implants, in Problemy implantologii v otorinolaringologii (Implants in Otorhinolaryngology), Moscow: Press-Solo, 2000, p. 18.
Google Scholar
Sarkisov, P.D., Michailenko, N.Yu., Stroganova, E.E., et al., Glass-Based Bioactive Calcium Phosphate Materials, Proc. XIX Int. Congress on Glass, Edinburg, 2001, p. 23.
Suchanek, W. and Yoshimura, M., Processing and Properties of HA-Based Biomaterials for Use as Hard Tissue Replacement Implants, J. Mater. Res. Soc., 1998, vol. 13, no. 1, pp. 94–103.
Google Scholar
Hing, K.A., Best, S.M., Tanner, K.A., et al., Quantification of Bone Ingrowth within Bone Derived Porous Hydroxyapatite Implants of Varying Density, J. Mater.Sci.: Mater. Med., 1999, vol. 10, no. 10/11, pp. 633–670.
Google Scholar
Krajewski, A., Ravaglioli, A., Roncari, E., et al., Porous Ceramic Bodies for Drug, J. Mater. Sci.: Mater. Med., 2000, vol. 11, no. 12, pp. 763–772.
Google Scholar
Paul, W. and Sharma, C.P., Development of Porous Spherical Hydroxyapatite Granules: Application towards Protein Delivery, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 7, pp. 383–388.
Google Scholar
Vaz, L., Lopes, A.B., and Almeida, M., Porosity Control of Hydroxyapatite Implants, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 10/11, pp. 239–242.
Google Scholar
Lio, D., Fabrication of Hydroxyapatite Ceramic with Controlled Porosity, J. Mater. Sci.: Mater. Med., 1997, vol. 8, no. 8, pp. 227–232.
Google Scholar
Itokazu, M., Esaki, M., Yamamoto, K., et al., Local Drug Delivery System Using Ceramics: Vacuum Method for Impregnating a Chemotherapeutic Agent into a Porous Hydroxyapatite Block, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 4, pp. 249–252.
Google Scholar
Lu, J.X., Flautre, B., and Anselme, K., Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 2, pp. 111–120.
Google Scholar
Yamamoto, M., Tabata, Y., Kawasaki, H., and Ikada, Y., Promotion of Fibrovascular Tissue Ingrowth into Porous Sponges by Basic Fibroblast Growth Factor, J.Mater. Sci.: Mater. Med., 2000, vol. 11, no. 14, pp. 213–218.
Google Scholar
Weinlander, M., Plenk, H., Jr., Adar, F., and Holmes, R., Bioceramics and the Human Body, Ravaglioli, A. and Krajewski, A., Eds., London: Elsevier, 1992, p. 317.
Google Scholar
Samusev, R.P. and Selin, Yu.M., Anatomiya cheloveka (Human Anatomy), Moscow: Meditsina, 1990.
Google Scholar
Martin, R.B., Bone as a Ceramic Composite Material, Mater. Sci. Forum, 1999, vol. 7, no. 1, pp. 5–16.
Google Scholar
Gunderson, S.L. and Schiavone, R.C., International Encyclopedia of Composites, Lee, S.M., Ed., New York: VCH, 1991, vol. 5.
Google Scholar
Katz, J.L., The Mechanical Properties of Biological Materials, Cambridge: Cambridge Univ. Press, 1980.
Google Scholar
Barinov, S.M. and Shevchenko, V.Ya., Prochnost' tekhnicheskoi keramiki (Strength of Technical Ceramics), Moscow: Nauka, 1997.
Google Scholar
Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Nauka, 1993.
Google Scholar
Buravov, A.D., Barinov, S.M., Grigorjev, O.N., et al., Carbon-and Ceramic-Matrix Composites, London: Chapman and Hall, 1995, p. 380.
Google Scholar
Monma, H.J., Processing of Synthetic Hydroxyapatite, J. Ceram. Soc. Jpn., Dent. Res., 1980, vol. 8, no. 40, pp. 97–102.
Google Scholar
Slosarczyk, A., Stobierska, E., Paszkiewicz, Z., and Gawlicki, M., Calcium Phosphate Materials Prepared from Precipitates with Various Calcium: Phosphorus Molar Ratios, J. Am. Ceram. Soc., 1996, vol. 79, no. 10, pp. 2539–2544.
Google Scholar
Mortier, A., Lemaitre, J., Rondrique, L., et al., Synthesis and Thermal Behavior of Well Crystallized Calcium-Deficient Phosphate Apatite, J. Solid State Chem., 1989, vol. 26, no. 2, pp. 215–219.
Google Scholar
Barinov, S.M. and Komlev, V.S., Hydroxyapatite-Base Granules for Targeted and Time-Controlled Drug Delivery, Book of Lectures Presented at the 3rd Course on Biomaterials, Rustichelli, F. and Davidson, C., Eds., Ancona, 2001, pp. 1–7.
Klyuchnikov, N.G., Rukovodstvo po neorganicheskomu sintezu (A Guide to Inorganic Synthesis), Moscow: Khimiya, 1965.
Google Scholar
Kibal'chits, V. and Komarov, V.F., High-Speed Synthesis of Hydroxyapatite Crystals, Zh. Neorg. Khim., 1980, vol. 25, no. 2, pp. 565–567.
Google Scholar
Orlovskii, V.P. and Barinov, S.M., Hydroxyapatite and Hydroxyapatite-Matrix Ceramics: A Survey, Russ. J.Inorg. Chem., 2001, vol. 46, no. 2, pp. 129–149.
Google Scholar
Aizawa, M., Hanazawa, T., Itatani, K., et al., Characterization of Hydroxyapatite Powders Prepared by Ultrasonic Spray-Pyrolysis Technique, J. Mater. Sci., 1999, vol. 34, no. 12, p. 2865.
Google Scholar
Kokubo, T., Potential of Ceramics as Biomaterials, Ceramics and Society, Brook, R.J., Ed., Faenza: Techna, 1995.
Google Scholar
Orlovskii, V.P., Ezhova, Zh.A., Rodicheva, G.V., et al., Hydroxyapatite Phase Relations in the System CaCl2–(NH4)2HPO4–NH4OH–H2O (25°C), Zh. Neorg. Khim., 1992, vol. 37, no. 4, pp. 881–883.
Google Scholar
Orlovskii, V.P., Ezhova, Zh.A., Rodicheva, G.V., et al., Structural Transformations of Hydroxyapatite in the Range 100–1600°C, Zh. Neorg. Khim., 1990, vol. 34, no. 5, p. 1337.
Google Scholar
Turova, N.Ya. and Yanovskaya, M.I., Synthesis of Hydroxyapatite Crystals, Izv. Akad. Nauk SSSR, Neorg.Mater., 1983, vol. 19, no. 5, p. 693.
Google Scholar
Hench, L.L., Bioceramics and the Future, Ceramics and Society, Brook, R.J., Ed., Faenza: Techna, 1995.
Google Scholar
Zhang, S. and Gonsalves, K.E., Preparation and Characterization of Thermally Stable Nanohydroxyapatite, J. Mater. Sci.: Mater. Med., 1997, vol. 8, no. 8, pp. 25–28.
Google Scholar
Elliort, J.C., Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Amsterdam: Elsevier, 1994.
Google Scholar
Dubok, V.A. and Ul'yanin, N.V., Synthesis, Properties, and Applications of Osteotropic Substitute Materials Based on Hydroxyapatite Ceramics, Ortop., Travmatol.Protez., 1998, vol. 6, no. 3, pp. 26–30.
Google Scholar
Feenstra, L. and de Groot, K., Bioceramics of Calcium Phosphate, Boca Raton: CRC, 1983.
Google Scholar
Jarcho, M., Bolen, C.H., Thomas, M.B., et al., Synthesis and Characterization in Dense Polycrystalline Form, J. Mater. Sci., 1976, vol. 11, no. 10, p. 2027.
Google Scholar
Yubao, L., de Groot, K., de Wijn, J., et al., Morphology and Composition of Nanograde Calcium Phosphate Needle-like Crystals Formed by Simple Hydrothermal Treatment, J. Mater. Sci.: Mater. Med., 1994, vol. 5, pp. 326–331.
Google Scholar
Yubao, L., Klein, C.P., de Wijn, J., et al., Shape Change and Phase Transition of Needle-like Non-Stoichiometric Apatite Crystals, J. Mater. Sci.: Mater. Med., 1991, vol. 2, no. 1, pp. 51–55.
Google Scholar
Orlovskii, V.P., Ionov, S.P., and Rusakova, R.A., Hydroxyapatite Phase Relations in the System CaCl2–(NH4)2HPO4–NH4OH–H2O, Dokl. Akad. Nauk, 1992, vol. 325, no. 5, p. 522.
Google Scholar
Orlovskii, V.P. and Ionov, S.P., Synthesis of Hydroxyapatite in the System CaCl2–(NH4)2HPO4–NH4OH–H2O, Zh. Neorg. Khim., 1995, vol. 40, no. 12, p. 1961.
Google Scholar
Vincent, J., Structural Biomaterials, Princeton: Princeton Univ. Press, 1990.
Google Scholar
Kelly, A., Strong Solids, London: Oxford Univ. Press, 1971. Translated under the title Vysokoprochnye materialy, Moscow: Mir, 1976.
Google Scholar
Hosoi, K., Hashida, T., Takahashi, H., et al., New Processing Technique for Hydroxyapatite Ceramics by the Hydrothermal Hot-Pressing Method, J. Am. Ceram.Soc., 1996, vol. 80, no. 10, pp. 2771–2774.
Google Scholar
Hench, L.L., Bioceramics: From Concept to Clinic, J.Am. Ceram. Soc., 1991, vol. 75, no. 7, pp. 1487–1510.
Google Scholar
LeGeros, R.Z., Biodegradation and Bioresorption of Calcium Phosphate Ceramics, J. Clin. Mater., 1993, vol. 35, no. 14, p. 65.
Google Scholar
De With, G., Van Dijk, H.J.A., Hattu, N., and Prijs, K., Preparation, Microstructure, and Mechanical Properties of Dense Polycrystalline Hydroxyapatite, J. Mater. Sci., 1981, vol. 16, no. 7, pp. 1592–1598.
Google Scholar
Hech, L.L., Bioceramics, J. Am. Ceram. Soc., 1998, vol. 82, no. 7, pp. 1705–1733.
Google Scholar
Ruys, A.J., Wei, M., Sorrell, C.C., et al., Sintering Effects on Strength of Hydroxyapatite, Biomaterials, 1995, vol. 16, no. 5, pp. 409–415.
PubMed
Google Scholar
Wang, P.E. and Chaki, T.K., Sintering Behavior and Mechanical Properties of Hydroxyapatite and Dicalcium Phosphate, J. Mater. Sci.: Mater. Med., 1993, vol. 4, no. 3, pp. 150–158.
Article
Google Scholar
Cuneyt Tas, A., Korkusuz, E., Timucin, M., and Akkas, N., An Investigation of the Chemical Synthesis and High Temperature Sintering Behavior of Calcium HA and Tricalcium Phosphate Bioceramics, J. Mater.Sci.: Mater. Med., 1997, vol. 8, no. 2, pp. 91–96.
Google Scholar
Fateeva, L.V., Golovkov, Yu.M., Barinov, S.M., et al., Effect of Sodium Phosphate on the Sintering Behavior of Hydroxyapatite Ceramics, Ogneupory Tekh. Keram., 2001, no. 1, p. 6.
Google Scholar
Santos, J.D., Reis, R.L., Monteiro, F.J., et al., Liquid Phase Sintering of Hydroxyapatite by Phosphate and Silicate Glass Additions: Structure and Properties of the Composites, J. Mater. Sci.: Mater. Med., 1995, vol. 6, no. 4, p. 348.
Google Scholar
Ratner, B.D., New Ideas in Biomaterials Sciences—Path to Engineering Biomaterials, J. Biomed. Mater.Res., 1993, vol. 27, no. 6, pp. 837–850.
PubMed
Google Scholar
Solov'ev, M.M., Ivasenko, I.N., Alekhova, T.M., et al., Effect of Hydroxyapatite on Cavity Healing in Carious Teeth, Stomatologiya, 1992, nos. 3–6, pp. 8–10.
Google Scholar
Hupp, J.R. and Me Kenna, S.J., Use of Porous Hydroxylapatite Blocks for Augmentation of Atrophic Mandibles, J. Oral Maxillofac. Surg., 1998, no. 7, pp. 538–545.
Google Scholar
Stahe, S.S. and Frourn, S.J., Histologic and Clinical Responses to Porous Hydroxylapatite Implants in Human Periodontal Defects: Three to Twelve Months Postimplantation, J. Periodontol., 1987, no. 10, pp. 689–695.
Google Scholar
Uchida, A., Nade, S., Eric, M., and Ching, W., Bone Ingrowth into Three Different Porous Ceramics Implanted into the Tibia of Rats and Rabbits, J. Orthop.Res., 1985, no. 3, pp. 65–77.
PubMed
Google Scholar
Uchida, A., Shinto, Y., Araki, N., and Ono, K., Slow Release of Anticancer Drugs from Porous Calcium Hydroxyapatite Ceramic, J. Orthop. Res., 1992, no. 10, pp. 440–445.
PubMed
Google Scholar
Slosarzyk, A., Stobierska, E., and Paszkiewicz, Z., Porous Hydroxyapatite Ceramics, J. Mater. Sci. Lett., 1999, vol. 19, no. 18, p. 1163.
Google Scholar
Yamasaki, N., Kai, T., Nishioka, M., et al., Porous Hydroxyapatite Ceramics Prepared by Hydrothermal Hot-Pressing, J. Mater. Sci. Lett., 1990, vol. 10, no. 10, p. 1150.
Google Scholar
Tanner, K.E., Downes, R.N., and Bonfield, W., Clinical Application of Hydroxyapatite Reinforced Polyethylene, Br. Ceram. Trans. J., 1994, no. 3, pp. 104–107.
Google Scholar
Liu, D., Preparation and Characterization of Porous HA Bioceramic via a Slip-Casting Route, J. Ceram. Int., 1997, vol. 24, no. 4, pp. 441–446.
Google Scholar
Engin, N.O. and Tas, A.C., Preparation of Porous Ca10(PO
4)6(OH)2 and bgr
-Ca
3(PO4)2 Bioceramics, J.Am. Ceram. Soc., 2000, vol. 84, no. 7, pp. 1581–1584.
Google Scholar
Sepulveda, P., Ortega, F.S., and Murilo, D.M., Properties of Highly Porous Hydroxyapatite Obtained by the Gel Casting of Foams, J. Am. Ceram. Soc., 2000, vol. 3, no. 12, pp. 3021–3024.
Google Scholar
Komlev, V.S., Barinov, S.M., Orlovskii, V.P., and Kurdyumov, S.G., Porous Hydroxyapatite Ceramics with a Bimodal Pore Size Distribution, Ogneupory Tekh. Keram., 2001, no. 6, pp. 23–25.
Donath, K., Relation of Tissue to Calcium Phosphate Ceramics, Osseous, 1991, vol. 1, p. 100.
Google Scholar
Durucan, C. and Brown, P.W., α-Tricalcium Phosphate Hydrolysis to Hydroxyapatite at and near Physiological Temperature, J. Mater. Sci.: Mater. Med., 2000, vol. 11, no. 6, p. 365.
Google Scholar
Krasulin, Yu.L., Barinov, S.M., and Ivanov, V.S., Struktura i razrushenie materialov iz poroshkov tugoplavkikh soedinenii (Structure and Fracture of Materials Prepared from Powders of Refractory Compounds), Moscow: Nauka, 1985.
Google Scholar
Andrievskii, R.A., Strength of Sintered Bodies, Poroshk. Metall. (Kiev), 1982, no. 1, p. 37.
Google Scholar
Metsger, D.S., Rieger, M.R., and Foreman, D.W., Mechanical Properties of Sintered Hydroxyapatite and Tricalcium Phosphate Ceramic, J. Mater. Sci.: Mater.Med., 1999, vol. 10, no. 1, p. 9.
Google Scholar
Hing, K.A., Best, S.M., and Bonfield, W., Characterization of Porous Hydroxyapatite, J. Mater. Sci.: Mater.Med., 1999, vol. 10, no. 3, pp. 135–145.
Google Scholar
Tas, A.C. and Ozgur Engin, N., Manufacture of Macroporous Calcium Hydroxyapatite Bioceramics, J.Eur. Ceram. Soc., 1999, vol. 19, no. 13/14, p. 2569.
Google Scholar
Nakajima, T., Ichiro Ono, M.D., and Tohru Tateshita, M.D., Porous Hydroxyapatite Ceramics and Their Ability to Be Fixed by Commercially Available Screws, Biomaterials, 1999, vol. 20, no. 17, p. 1595.
PubMed
Google Scholar
Roncari, E., Galassi, C., and Pinasco, P., Tape Casting of Porous Hydroxyapatite Ceramics, J. Mater. Sci. Lett., vol. 20, no. 1, pp. 33–35.
Powers, J.M., Yaszemski, M.J., Thomson, R.C., and Mikos, A.G., Hydroxyapatite Fiber Reinforced Poly(ahydroxy ester) Foams for Bone Regeneration, Biomaterials, 1998, vol. 19, no. 21, pp. 1935–1943.
PubMed
Google Scholar
Yoshio Ota, Y., Iwashita, T., Kasuga, T., et al., Novel Preparation Method of Hydroxyapatite Fibers, J. Am.Ceram. Soc., 1998, vol. 81, no. 6, pp. 1665–1733.
Google Scholar
Klassen, P.V. and Grishaev, I.G., Osnovy tekhniki granulirovaniya (Fundamentals of Granulation), Moscow: Khimiya, 1982.
Google Scholar
Komlev, V.S., Barinov, S.M., and Fadeeva, I.V., Porous Hydroxyapatite Ceramic Granules for Drug Delivery Systems, Novye Tekhnol.–21 Vek, 2001, no. 5, pp. 18–19.
Google Scholar
Komlev, V.S., Barinov, S.M., Orlovskii, V.P., and Kurdyumov, S.G., Porous Hydroxyapatite Ceramic Granules, Ogneupory Tekh. Keram., 2001, no. 5, pp. 18–20.
Google Scholar
Gautier, H., Merle, C., Auget, J.L., and Daculsi, G., Isostatic Compression, a New Process for Incorporating Vancomycin into Biphasic Calcium Phosphate: Comparison with a Classical Method, Biomaterials, 2000, vol. 21, no. 2, pp. 243–249.
PubMed
Google Scholar
Kovalevskii, A.M., Surgical Treatment of Generalized Parodontitis Using Biopolymers and Bioceramics: A Clinical–Experimental Investigation, Cand. Sci. (Med.) Dissertation, St. Petersburg, 1998.
Fedosenko, T.D., Application of Hydroxyapatite Preparations in Combined Therapy of Parodontopathy, Extended Abstract of Cand. Sci. (Med.) Dissertation, St.Petersburg, 1994.
Chernysh, V.F., Shutov, Yu.N., and Kovalevskii, A.M., New Methods in Parodontium Surgery, Parodontologiya, 1997, no. 4, pp. 19–23.
Google Scholar
Dash, A.K. and Cudworth, G.C., Therapeutic Applications of Implantable Drug Delivery Systems, J. Pharmacol.Toxicol. Methods, 1998, no. 1, pp. 1–12.
Google Scholar
Chien, Y.W., Novel Drug Delivery Systems, New York: Marcel Dekker, 1992, 2nd ed.
Google Scholar
Lasserre, A. and Bajpai, P.K., Ceramic Drug-Delivery Devices, Crit. Rev. Therap. Drug Carrier Syst., 1998, no. 11, pp. 1–56.
Google Scholar
Tyle, P., Drug Delivery Devices: Fundamentals and Applications, New York: Marcel Dekker, 1988.
Google Scholar
Morrell, R., Handbook of Properties of Technical and Engineering Ceramics. Part 1: An Introduction for the Engineer and Designer, London: Her Majesty's Stationary Office, 1989.
Google Scholar
Leont'ev, V.K., Volozhin, A.I., Kurdyumov, S.G., et al., Clinical Application of the New Preparations Gidroksiapol and Kolapol: First Results, Stomatologiya, 1995, no. 5, p. 69.
Google Scholar
Komlev, V.S., Porous Hydroxyapatite Ceramics and Related Composites, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow: Inst. of Physicochemical Problems in Ceramic Science, Russ. Acad. Sci., 2001.
Google Scholar
Dewith, G. and Gorbijn, A.T., Metal Fibre Reinforced Hydroxyapatite Ceramics, J. Mater. Sci., 1989, vol. 24, no. 14, pp. 3411–3415.
Google Scholar
Tamari, N., Kondo, N., Mouki, M., et al., Effect of Calcium Fluoride Addition on Densification and Mechanical Properties of Hydroxyapatite–Zirconia Composite Ceramics, J. Ceram. Soc. Jpn., 1987, vol. 95, no. 8, p. 806.
Google Scholar
Li, J., Forbreg, S., and Hermansson, L., Evaluation of the Mechanical Properties of Hot Isostatically Pressed Titania and Titania–Calcium Phosphate Composites, Biomaterials, 1991, vol. 12, no. 5, pp. 438–440.
PubMed
Google Scholar
Young-Min Kong, Y.M., Sona Kim, S., and Lee, S., Reinforcement of Hydroxyapatite Bioceramic by Addition of ZrO2 Coated with Al2O3, J. Am. Ceram. Soc., 1999, vol. 83, no. 11, p. 2963.
Google Scholar
Towler, M.R. and Gibson, I.R., The Effect of Low Levels of Zirconia Addition of the Mechanical Properties of Hydroxyapatite, J. Mater. Sci. Lett., 2001, vol. 20, no. 18, p. 1719.
Google Scholar
Bakos, D., Soldan, M., and Hernandez-Fuentes, I., Hydroxyapatite–Collagen–Hyaluronic Acid Composite, Biomaterials, 1999, vol. 20, no. 2, pp. 191–195.
PubMed
Google Scholar
Bonfield, W., Grynpas, M.D., Tully, A.E., et al., Hydroxyapatite Reinforced Polyethylene—a Mechanically Compatible Implant, Biomaterials, 1981, vol. 2, no. 1, pp. 137–156.
Google Scholar
Dalby, M.J., Di Silvio, L., Harper, E.J., and Bonfield, W., In Vitro Evaluation of New Polymethylmethacrylate Cement Reinforced with Hydroxyapatite, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 12, p. 793.
Google Scholar
Ignjatovic, N. and Delijic, K., The Designing of Properties of Hydroxyapatite/Poly-L-lactide Composite Biomaterials by Hot Pressing, J. Zeit. Metal., 2001, vol. 92, no. 2, pp. 145–149.
Google Scholar
Knepper, M., Moricca, S., and Milthorpe, B.K., Stability of Hydroxyapatite While Processing Short-Fibre Reinforced Hydroxyapatite Ceramics, Biomaterials, 1997, vol. 18, no. 23, p. 1523.
PubMed
Google Scholar
Di Silvio, L., Dalby, M., and Bonfield, W., In Vitro Response of Osteoblasts to Hydroxyapatite-Reinforced Polyethylene Composites, J. Mater. Sci.: Mater. Med., 1998, vol. 9, no. 12, pp. 845–848.
Article
Google Scholar
Wang, M., Bonfield, W., and Joseph, R., Hydroxyapatite– Polyethylene Composites for Bone Substitution: Effects of Ceramic Particle Size, Biomaterials, 1998, vol. 18, no. 24, pp. 2357–2366.
Google Scholar
Watson, K.E., Tenhuisen, K.S., and Brown, P.W., The Formation of Hydroxyapatite–Calcium Polyacrylate Composites, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 4, pp. 205–213.
Google Scholar
Okuno, M. and Shikinami, Y., Bioresorbable Devices Made of Forged Composites of Hydroxyapatite (HA) Particles and Poly-L-lactide (PLLA): Part I: Basic Characteristics, Biomaterials, 1999, vol. 19, no. 9, p. 859.
Google Scholar