Skip to main content
Log in

The Effect of CO2 and H2O on the Kinetics of NO Reduction by CH4 Over Sr-Promoted La2O3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The influence of CO2 and H2O on the activity of 4% Sr-La2O3 mimics that observed with pure La2O3, and a reversible inhibition of the rate is observed. CO2 causes a greater effect, with decreases in rate of about 65% with O2 present and 90% in its absence, while with H2O in the feed, the rate decreased around 35-40% with O2 present or absent. The influence of these two reaction products on kinetic behavior can be described by assuming competitive adsorption on the surface, incorporating adsorbed CO2 and H2O in the site balance, and using rate expressions previously proposed for this reaction over Sr-promoted La2O3. In the absence of O2, the rate expression is

$$r_{N_2 } = \frac{{k'P_{{\text{NO}}} P_{{\text{CH}}_{\text{4}} } }}{{{\text{(1 + }}K_{{\text{NO}}} P_{{\text{NO}}} {\text{ + }}K_{{\text{CH}}_{\text{4}} } P_{{\text{CH}}_{\text{4}} } {\text{ + }}K_{{\text{CO}}_{\text{2}} } P_{{\text{CO}}_{\text{2}} } {\text{ + }}K_{{\text{H}}_{\text{2}} {\text{O}}} P_{{\text{H}}_{\text{2}} {\text{O}}} {\text{)}}^{\text{2}} }},$$

which yields a good fit to the experimental data and gives optimized equilibrium adsorption constants that demonstrate thermodynamic consistency. With O2 in the feed, nondifferential changes in reactant concentrations through the reactor bed were accounted for by assuming integral reactor behavior and simultaneously considering both CH4 combustion and CH4 reduction of NO, which provided the following rate law for total CH4 disappearance:

$$(r_{{\text{CH}}_{\text{4}} } )_{\text{T}} = \frac{{k'_{{\text{com}}} P_{{\text{CH}}_{\text{4}} } P_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} + k'_{{\text{NO}}} P_{{\text{NO}}} P_{{\text{CH}}_{\text{4}} } P_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} }}{{{\text{(1 + }}K_{{\text{NO}}} P_{{\text{NO}}} {\text{ + }}K_{{\text{CH}}_{\text{4}} } P_{{\text{CH}}_{\text{4}} } {\text{ + }}K_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} P_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} {\text{ + }}K_{{\text{CO}}_{\text{2}} } P_{{\text{CO}}_{\text{2}} } {\text{ + }}K_{{\text{H}}_{\text{2}} {\text{O}}} P_{{\text{H}}_{\text{2}} {\text{O}}} {\text{)}}^{\text{2}} }}.$$

The second term of this expression represents N2 formation, and it again fit the experimental data well. The fitting constants in the denominator, which correspond to equilibrium adsorption constants, were not only thermodynamically consistent but also provided entropies and enthalpies of adsorption that were similar to values obtained with other La2O3-based catalysts. Apparent activation energies typically ranged from 23 to 28 kcal/mol with O2 absent and 31-36 kcal/mol with O2 in the feed. With CO2 in the feed, but no O2, the activation energy for the formation of a methyl group via interaction of CH4 with adsorbed NO was determined to be 35 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. DeBoy and R.F. Hicks, J. Chem. Soc., Chem. Commun. (1988) 982.

  2. J.M. DeBoy and R.F. Hicks, Ind. Eng. Chem. Res. 27 (1988) 1577.

    Google Scholar 

  3. J.M. DeBoy and R.F. Hicks, J. Catal. 113 (1988) 517.

    Google Scholar 

  4. X. Zhang, A.B. Walters and M.A. Vannice, Appl. Catal B 7 (1996) 321.

    Google Scholar 

  5. S.-J. Huang, A.B. Walters and M.A. Vannice, Appl. Catal. B 17 (1998) 183.

    Google Scholar 

  6. S.-J. Huang, A.B. Walters and M.A. Vannice, J. Catal. 173 (1998) 229.

    Google Scholar 

  7. Z. Kalenik and E.E. Wolf, Catal. Lett. 9 (1991) 441.

    Google Scholar 

  8. S.J. Conway, J.A. Greig and G.M. Thomas, Appl. Catal. A 86 (1992) 199.

    Google Scholar 

  9. A.G. Anshits, E.N. Voskresenykaya and E.V. Kondratenko, Catal. Today 24 (1995) 217.

    Google Scholar 

  10. T. Le Van, M. Che, M. Kermarec, C. Louis and J.M. Tatibouet, Catal. Lett. 6 (1990) 395.

    Google Scholar 

  11. H. Piao, Y.L. Bi and K.J. Zhen, Chem. Res. Chinese. Univ. 13 (1997) 39.

    Google Scholar 

  12. T.J. Toops, A.B. Walters and M.A. Vannice, Appl. Catal. B, In press.

  13. T.J. Toops, A.B. Walters and M.A. Vannice, Appl. Catal. A, In press.

  14. T.J. Toops, A.B. Walters and M.A. Vannice, Catal. Lett. 64 (2000) 65.

    Google Scholar 

  15. B. Klingenberg and M.A. Vannice, Chem Mater. 8 (1996) 2755.

    Google Scholar 

  16. M.P. Rosynek and D.T. Magnuson, J. Catal. 46 (1977) 402.

    Google Scholar 

  17. K.C. Khara, H.J. Robota and D.J. Liu, Appl. Catal. B 2 (1993) 225.

    Google Scholar 

  18. J.Y. Yan, G.-D. Lei, W.M.H. Sachtler and H.H. Kung, J. Catal. 141 (1996) 161.

    Google Scholar 

  19. X. Feng and W.K. Hall, J. Catal. 166 (1997) 368.

    Google Scholar 

  20. M.D. Fokema and J.Y. Ying, Appl. Catal. B 18 (1998) 71.

    Google Scholar 

  21. L. Chen, T. Horiuchi and T. Mori, Catal. Lett. 72(1–2) (2001) 71.

    Google Scholar 

  22. P. Budi and R. Howe, Catal. Today 38 (1997) 175.

    Google Scholar 

  23. Z. Li and M. Flytzani-Stephanopolous, Appl. Catal. B 22 (1999) 35.

    Google Scholar 

  24. E. Kikuchi, M. Ogura, N. Aratani, Y. Sugiura, S. Hiromoto and K. Yogo, in: Environmental Catalysis, eds. G. Centi, S. Perathoner, C. Christani and P. Forzatti, Rome, Italy, 1995, p. 27.

  25. Y. Li and J.N. Armor, Appl. Catal. B 5 (1995) L257.

    Google Scholar 

  26. Y. Li and J.N. Armor, J. Catal. 150 (1994) 376.

    Google Scholar 

  27. E. A. Efthimidias, G.D. Lionta, S.C. Christoforou and I.A. Vasalos, Catal. Today 40 (1998) 15.

    Google Scholar 

  28. A. Martinez-Arias, M. Fernandez-Garcia, A. Iglesias-Juez, J.A. Anderson, J.C. Conesa and J. Soria, Appl. Catal. B 28 (2000) 29.

    Google Scholar 

  29. H.-Y. Chen and W.M.H. Sachtler, Catal. Today 42 (1998) 73.

    Google Scholar 

  30. M.A. Vannice, A.B. Walters and X. Zhang, J. Catal. 159 (1996) 119.

    Google Scholar 

  31. Y.D. Xu, L. Yu and X.X. Guo, Appl. Catal. A 164(1–2) (1997) 47.

    Google Scholar 

  32. T.J. Toops, Ph.D. Thesis, The Pennsylvania State University, 2001.

  33. M. Boudart, AIChE J. 18 (1972) 465.

    Google Scholar 

  34. M.A. Vannice, S.H. Hyun. B. Kalpakci and W.C. Liauh, J. Catal. 56 (1979) 358.

    Google Scholar 

  35. S.-J. Huang, A.B. Walters and M.A. Vannice, J. Catal. 192 (2000) 29.

    Google Scholar 

  36. S.-J. Huang, A.B. Walters and M.A. Vannice, Catal. Lett. 64 (2000) 77.

    Google Scholar 

  37. S. Xie, T.H. Ballinger, M.P. Rosynek and J.H. Lunsford, 11th International Congress on Catalysis, in: Studies in Surface Science and Catalysis, Vol. 101, eds. J.W. Hightower, W.N. Delgass, E. Iglesia and A.T. Bell (Elsevier, Amsterdam, 1996), p. 711.

    Google Scholar 

  38. S. Xie, M.P. Rosynek and J.H. Lunsford, J. Catal. 188 (1999) 32.

    Google Scholar 

  39. S. Xie, M.P. Rosynck and J.H. Lunsford, Catal. Lett. 43 (1997) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toops, T.J., Walters, A.B. & Vannice, M.A. The Effect of CO2 and H2O on the Kinetics of NO Reduction by CH4 Over Sr-Promoted La2O3 . Catalysis Letters 82, 45–57 (2002). https://doi.org/10.1023/A:1020583806660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020583806660

Navigation