Skip to main content
Log in

Evaluating the Effectiveness of Phosphate Fertilizers in some Venezuelan soils

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

In Venezuela, 70% of the soils are acid with low natural fertility where phosphorus is the most limiting element together with nitrogen and potassium for plant growth. The efficiency of phosphate fertilization is low. Greenhouse and field experiments were conducted to evaluate the efficiency of natural and modified rock phosphate using conventional and isotopic techniques. An incubation experiment was done to measure changes in available P on application of different phosphate fertilizers at a constant rate of 100 mg P/kg in ten acid soils of agricultural importance in Venezuela. In the greenhouse, two experiments were conducted to relate P fixation to soil P availability and the response of an index plant (Agrostis sp.). A high variability in P fixing capacity of the soils (r1/Ro = 0.02–0.76) was observed with the same level of available P. This fixation index is defined as the proportion of the added radioactivity (32P) remaining in the soil solution after 1 min of exchange and a low fixing capacity is indicated by the values close to 1. The proportion of the total soil P that can possibly enter the soil solution and therefore is potentially available for plant uptake was measured using the traditional method (Bray I) and the isotopic method (E value). The high variability was also apparent in available P extracted by Bray I showing a range of 10 to 88% of the total P removed by the extracting solution. The incubation studies showed that the effectiveness of the P source for available P in the soil solution was related to their reactivity and the soil P fixing properties. The increase in the fixing capacity of the soils used caused a significant reduction in the E value, independent of the source of P used. A high positive and significant correlation between Bray I extracted P and the E value (r = 0.95) obtained from the different treatments, showed the relationship of the extractant for some forms of available P in soils where rock phosphate was applied. In the greenhouse experiment, the crop response was related to the P fixing properties of the soil, the initial availability and the solubility of the P source used. The P in plant derived from the fertilizer and the Utilization Coefficient decreased significantly as the P fixing capacity of the soils increases indicating a lower availability of P for the the index plant (Agrostis sp.). The P in plant derived from the P fertilizers calculated by using the specific activity of each treatment and the one of the check plot showed that triple superphosphate had the highest values with acidulated Riecito rock phosphate (40%) having intermediate values, and Riecito rock phosphate having the lowest value. The use of 32P techniques as a powerful method to study soil P dynamics and P uptake from different P sources and the effectiveness of phosphate rocks (natural and modified) produced in Venezuela with respect to the water-soluble P source (imported), are some of the practical implications of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Association of Official Analytical Chemist (1975) Official methods of analysis, 12th Edition, Washington, DC

  • Barber S (1981) Soil chemistry and the availability of plant nutrients. In: Chemistry in the soil environment. Dowdy R, Ryan J, Volk V & Baker J (eds) American Society of Agronomy. Madinson, Wisconsin, 1–22

    Google Scholar 

  • Beckett P & White R (1964) Studies on the phosphate potentials of soils. I. The measurement of the phosphate potential. Plant Soil 20: 1–16

    Google Scholar 

  • Bray R & Kurtz L, 1945 Determination of total organic and available forms of phosphorus in soils. Soil Sci 59: 39–45

    Google Scholar 

  • Casanova E, 1992 Las rocas fosfóricas naturales y modificadas y su uso potencial en suelos y cultivos de Venezuela. In: Palmaven-Impofos (eds) Memorias del Curso sobre Fertilización Balanceada. Valencia, Venezuela. 88p

  • Casanova E, 1993 Las rocas fosfóricas y su uso agroindustrial en Venezuela. Apuntes Técnicos Palmaven, Caracas, Venezuela. 128p

  • Casanova EF, 1995 Agronomic evaluation of fertilizers with special reference to natural and modified phosphate rock. Fert Res 41: 211–218

    Google Scholar 

  • Casanova E, Goitia R, Pereira P, Comerma J & Aguilar C, 1993 Necesidades y perspectivas agronómicas de fertilizantes y enmiendas en Venezuela. Revista VENESUELOS 1(1): 17–23

    Google Scholar 

  • Comerma J & Paredes R, 1978 Principales limitaciones y potencial agrícola de las tierras en Venezuela. Agron Trop 28(2): 71–85

    Google Scholar 

  • Dabin B, 1967 Sur une méthode d'analyse du phosphore dans le sols tropicaux. In: Colloque sus la fertilité des sol tropicaux. Madagascar. pp. 99–115

  • Fardeau JC, 1981 Cinétique de dilution isotopique et phosphore asimilable de sols. Doctoral d'Etat. Paris. Thèse Université Pierre et Marie Curie. 197p

  • Fardeau JC & Jappe J, 1980 Choix de la fertilization phosphorique des sols tropicaux. Emploi du phosphore 32P. Agro Trop 35: 225–231

    Google Scholar 

  • Fardeau, JC, Morel C & Boniface R, 1991 Cinétiques de transfert des ions phosphate du sol vers la solution du sol: parametres caracteristiques. Agronomie 11: 787–797

    Google Scholar 

  • Fox R & Kamprath E (1970) Phosphate sorption isotherm for evaluating the phosphate requirements of soils. Soil Sci Amer Proc 34: 902–907

    Google Scholar 

  • Frossard E, Feller C, Tiessen H, Steward J, Fardeau JC & Morel J (1993) Can an isotope method allow for the determination of the phosphate fixing capacity of soils? Commun Soil Sci Plant Anal 24: 367–377

    Google Scholar 

  • International Atomic Energy Agency (1976) Measurement of soil and fertilizer phosphorus availability to plants. In: Tracer Manual on Crops and Soils. Techn. Rep. Series. IAEA. Vienna, Austria. 129–138

    Google Scholar 

  • John M (1970) Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci 68: 171–177

    Google Scholar 

  • Larsen S (1952) The use of 32P in studies on the uptake of phosphorus by plant. Plant Soil (4): 1–10

    Google Scholar 

  • Leon LA & Hammond LL (1984) Efectividad agronómica de las rocas fosfóricas del trópico latinoamericano, In La roca fosfórica, fertilizante directo de bajo costo, Ricaldi V & Escalera S (eds), Tomo II, pp 211–252, GLIRF, Bolivia

    Google Scholar 

  • Menon K & Fox R (1983) Utility of phosphate curves in estimating the phosphorus requirements of cereal crops: wheat (Triticum aestivum). Presented in the 3rd International Congress on Phosphorus Compounds. IMPHOS. Brussels.

    Google Scholar 

  • Morel C and Fardeau JC (1987) Le phosphore assimilable des sols intertropicaux: ses relations avec le phosphore extrait par deau méthodes chimiques. Agronomie Tropicale 42(4): 248–257

    Google Scholar 

  • Morel C & Fardeau JC (1991) Phosphorus bioavailability of fertilizers: a predictive laboratory method for its evaluation. Fert Res 28: 1–9

    Google Scholar 

  • Murphy J & Riley J (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 27: 31–36

    Google Scholar 

  • Olsen S & Khasawneh F (1980) Use and limitations of physical-chemical criteria for assessing the status of phosphorus in soils. In: The role of phosphorus in Agriculture. ASA-CSSA-SSSA. Madison, Wisconsin, pp. 361–410

    Google Scholar 

  • Orsini L & Remy J (1976) Utilization du chlorure de cobaltihexammine pour la détermination simultaneé de la capacité d'echange et des bases échangeables des sols. Soil Sci Bull AFES. 4: 269–279

    Google Scholar 

  • Russell R, Rickson J & Adams S (1954) Isotopic equilibria between phosphates in soil and their significance in the assesment of fertility by tracer methods. J. Soil Sci 5: 85–101

    Google Scholar 

  • Salas A & Casanova E (1995) Evaluación de la disponibilidad de fósforo y transformación de fertilizantes fosfatados en suelos de importancia agrícola en Venezuela. I: Parámetros de suelos. Agron Trop 45(2): 247–264

    Google Scholar 

  • Salas A, Casanova E & Duque J (1995) Evaluación de la disponibilidad de fósforo y transformación de fertilizantes fosfatados en suelos de importancia agrícola en Venezuela. II: Parámetros de plantas. Agron Trop 45(2): 265–282

    Google Scholar 

  • Sanchez P & Uehara G (1980) Managements considerations for acid soils with high phosphorus fixation capacity. In: The role of phosphorus in Agriculture. Kasawneh F, Sample E & Kamprath E (eds). ASA, Madison, Wisconsin, pp. 471–514

    Google Scholar 

  • Sen Tran T, Fardeau JC & Giroux M (1988) Effects of soil properties on plant available phosphorus determinated by isotopic phosphorus-32 method. Soil Sci Soc Am J 52: 1383–1390

    Google Scholar 

  • Schofield R (1955) Can a precise meaning be given to available soil phosphorus? Soil Fert 28: 373–375

    Google Scholar 

  • Truong B & Pichot J (1976) Influence du phosphore des graines de la plante test sur la détermination du phosphore isotopiquement diluable (Valeur L.). Agro. Trop. 31: 379–386

    Google Scholar 

  • Zapata F & Axmann H (1995) 32P isotopic techniques for evaluating the agronomic effectiveness of rock phosphate materials. Fert Res 41: 189–195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casanova, E., Salas, A. & Toro, M. Evaluating the Effectiveness of Phosphate Fertilizers in some Venezuelan soils. Nutrient Cycling in Agroecosystems 63, 13–20 (2002). https://doi.org/10.1023/A:1020582513441

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020582513441

Navigation