Skip to main content
Log in

Thermal Stability of Oxide-Based Ceramic Materials

  • Published:
Refractories and Industrial Ceramics Aims and scope

Abstract

A correlation analysis of the thermal stability of oxide-based ceramic materials (including partially yttria-stabilized zirconia (PYSZ), beta-alumina, and titanium dioxide) produced in batches by different technologies is carried out. A generalized criterion for thermal stability is proposed that takes into account partial compensation of the thermally generated elastic strain owing to compliant behavior of the network of surface cracks. The criterion provides a satisfactory description of experimental data, allows prediction of the behavior of materials under severe thermomechanical conditions, and suggests ways toward further improvement of material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. K. Strelov, Structure and Properties of Refractory Materials [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  2. R. A. Andrievskii and I. I. Spivak, The Strength of High-Melting Compounds and Materials [in Russian], Metallurgiya, Chelyabinsk (1989).

    Google Scholar 

  3. G. A. Gogotsi, “An analysis of thermal stability criteria in deformable refractories, ” Ogneupory, No. 5, 45-50 (1977).

  4. I. Yu. Prokhorov, G. Ya. Akimov, A. A. Dabizha, and V. V. Storozh, The Weibull Modulus and Hydrostatic Processing of Ceramics [in Russian], Preprint DonFTI-91-5, Donetsk (1991).

  5. G. Ya. Akimov, I. Yu. Prokhorov, I. V. Gorelik, et al., “Cold isostatic pressing and properties of a ZrO2-based ceramic prepared from ultradisperse powders, ” Ogneupory, No. 2, 12-19 (1995).

  6. I. Yu. Prokhorov, G. Ya. Akimov, V. M. Timchenko, and A. D. Vasil'ev, “Cold isostatic pressing as a technique for ZrO2-based high-strength ceramic materials, ” Ogneup. Tekh. Keram., No. 8, 12-17 (1997).

  7. I. Yu. Prokhorov, “Zirconia materials from coprecipitated powders, ” Ogneup. Tekh. Keram., No. 12, 6-13 (1997).

  8. Y. Masahiro and S. Somiya, Seramikkusu, 21(2), 126-134 (1986).

    Google Scholar 

  9. A. G. Gashchenko, G. A. Gogotsi, A. G. Karaulov, et al., “Thermal stability and mechanical properties of zirconia-based materials, ” Probl. Prochn., No. 6, 76-80 (1974).

    Google Scholar 

  10. D. F. Kalinovich, L. I. Kuznetsova, and É. T. Denisenko, “Zirconium dioxide: properties and application (review), ” Poroshk. Metall., No. 11, 98-103 (1987).

    Google Scholar 

  11. A. G. Évans and T. G. Langdon, Structural Ceramics [Russian translation], Metallurgiya, Moscow (1980).

    Google Scholar 

  12. V. L. Balkevich, Engineering Ceramics [in Russian], Stroiizdat, Moscow (1984).

    Google Scholar 

  13. N. M. Bobkova and L. M. Silich, “Heat-resistant ceramics and glass ceramics based on aluminum titanate, ” Zh. Vses. Khim. Ob-va, 36(5), 564-569 (1991).

    Google Scholar 

  14. K. Hamano, “Microstructure and mechanical strength of an aluminum titanate-based ceramic prepared from a mixture alumina and titania, ” Yogyo Kyokai Shi, 91(2), 94-101 (1983).

    Google Scholar 

  15. N. L. Carter and H. C. Heard, “Temperature and rate dependent deformation of halite, ” Am. J. Sci., 269(10), 193-249 (1970)

    Google Scholar 

  16. D. I. Sedov, Mechanics of Continua [in Russian].

  17. J. M. Krafft and J. R. Irvin, “Concerning the crack propagation velocity, ” in: Applied Problems in Fracture Toughness. Collection of Research Papers [Russian translation], Mir, Moscow (1968), pp. 187-212.

    Google Scholar 

  18. J. Congleton, N. J. Petch, and S. A. Shiels, “The brittle fracture of alumina below 1000°C, ” Phil. Mag., 19(160), 795-807 (1969).

    Google Scholar 

  19. A. I. Kozachuk, I. Yu. Solntseva, V. A. Stepanov, and V. V. Shpeizman, “The loading rate and its role in the fracture of brittle bodies, ” Fiz. Tverd. Tela, 25, Issue 7, 1945-1952 (1983).

    Google Scholar 

  20. P. W. Tasker, “The surface energies, surface tensions and surface structure of the alkali-halides crystals, ” Phil. Mag., 39(2), Part 1, 119-136 (1979).

    Google Scholar 

  21. J. J. Gilman, “Direct measurements of the surface energies of crystals, ” J. Appl. Phys., 31(12), 2208-2218 (1960).

    Google Scholar 

  22. E. Siegel, “Application of phonon theory of brittle fracture to shock spallation, ” Scr. Met., 6(9), 785-787 (1972).

    Google Scholar 

  23. I. Yu. Prokhorov and G. Ya. Akimov, “The crack resistance of hydrostatically compressed alkali-halide single crystals, ” Probl. Prochn., No. 7, 23-28 (1987).

  24. I. Yu. Prokhorov, The Effect of Hydrostatic Pressure on the Fracture of Crystalline Materials, Author's Abstract of Candidate's Thesis [in Russian], Donetsk (1991).

  25. I. P. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Moduli of Elasticity of Metals and Nonmetals. Handbook [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  26. J.-L. Shi, J. H. Gao, Z.-X. Lin, and T.-S. Yen, “Sintering behavior of fully agglomerated zirconia compacts, ” J. Am. Chem. Soc., 74(5), 994-997 (1991).

    Google Scholar 

  27. I. Yu. Prokhorov, G. Ya. Akimov, and V. M. Timchenko, “Stability of ZrO2-based structural materials, ” Ogneup. Tekh. Keram., No. 6, 2-11 (1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokhorov, I.Y. Thermal Stability of Oxide-Based Ceramic Materials. Refractories and Industrial Ceramics 43, 195–205 (2002). https://doi.org/10.1023/A:1020579419633

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020579419633

Keywords

Navigation