Skip to main content
Log in

Study of a Li–Ni oxide mixture as a novel cathode for molten carbonate fuel cells by electrochemical impedance spectroscopy

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Li–Ni oxide mixtures with high lithium content are considered to be an alternative cathode material for molten carbonate fuel cells (MCFCs). The electrochemical behaviour of Li0.4Ni0.6O samples has been investigated in a Li–K carbonate melt at 650 °C by electrochemical impedance spectroscopy as a function of immersion time and O2 and CO2 partial pressure. The impedance spectra have been interpreted using a transmission line model that includes contact impedance between reactive particles. The Li0.4Ni0.6O powder particles show structural changes due to high lithium leakage and low nickel dissolution from the reactive surface to the electrolyte during the first 100 h of immersion. After this time, the structure seems to be stable. The partial pressures of O2 and CO2 affect the processes of oxygen reduction and Li–Ni oxide oxidation. X-ray diffraction and chemical analysis performed on samples before and after the electrochemical tests have confirmed that the lithium content decreases. SEM observations reveal a reduction in grain size after the electrochemical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nishina, S. Ohuchi, K. Yamada and I. Uchida, J. Electroanal. Chem. 408 (1996) 181.

    Google Scholar 

  2. B. Fang and H. Chen, J. Electroanal. Chem. 501 (2001) 128.

    Google Scholar 

  3. M. Cassir and C. Belhomme, Plasma & Ions 1 (1999) 3.

    Google Scholar 

  4. M. Mohamedi, Y. Hisamitsu, Y. Ono, T. Itoh and I. Uchida, J. Appl. Electrochem. 30 (2000) 1397.

    Google Scholar 

  5. A. Prins-Jansen, G.A.J.M. Plevier, K. Hemmes and J.H.W. de Witt, Electrochim. Acta 41 (1996) 1323.

    Google Scholar 

  6. P. Tomczyk, J. Wyrna and M. Mosialek, J. Electroanal. Chem. 463 (1999) 78.

    Google Scholar 

  7. F.J. Pérez, D. Duday, M.P. Hierro, C. Gómez, M. Romero, M.T. Casais, J.A. Alonso, M.J. Martínez and L. Daza, J. Power Sources 72 (2000) 309.

    Google Scholar 

  8. T. Fukui, H. Okawa, T. Tsunooka, J. Power Sources 71 (1998) 239.

    Google Scholar 

  9. L. Plomb, E.F. Sitters, C. Vessies and F.C. Eckes, J. Electrochem. Soc. 138 (1991) 629.

    Google Scholar 

  10. R.C. Makkus, K. Hemmes and J.H.W. de Wit, J. Electrochem. Soc. 141 (1994) 429.

    Google Scholar 

  11. T. Fukui, S. Ohara, H. Okawa, T. Hotta and M. Naito, J. Power Sources 86 (2000) 340.

    Google Scholar 

  12. K. Hatoh, J. Nikura, E. Yasumoto and T. Gamo, Denki Kagaku 64 (1996) 825.

    Google Scholar 

  13. L. Daza, M.J. Escudero, E. Hontanñón, C.M. Rangel, T. Rodrigo, M.T. Casais and M.J. Martínez, 2000 Fuel Cell Seminar, Portland, Oregon, USA. Abstracts 30 Oct.–2 Nov. (2000) 732.

  14. L. Giorgi, M. Carewska, S. Scaccia, E. Simoneti, E. Giacometti and R. Tulli, Int. J. Hydrogen Energy 21 (1996) 491.

    Google Scholar 

  15. J.A. Nelder and R. Mead. Computer J. 7 (1985) 308.

    Google Scholar 

  16. C.M. Abreu, M. Izquierdo, M. Keddam, X.R. Nóvoa and H. Takenouti, Electrochim. Acta 41 (1996) 2045.

    Google Scholar 

  17. M. Keddam, H. Takenouti, X.R. Nóvoa, C. Andrade and C. Alonso, Cem. Conc. Res. 27 (1997) 1191.

    Google Scholar 

  18. C. Belhomme, M. Cassir, J. Devynck and G. Gregoire, J. Mater. Sci. 35 (2000) 2683.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.R. Nóvoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escudero, M., Nóvoa, X., Rodrigo, T. et al. Study of a Li–Ni oxide mixture as a novel cathode for molten carbonate fuel cells by electrochemical impedance spectroscopy. Journal of Applied Electrochemistry 32, 929–936 (2002). https://doi.org/10.1023/A:1020572308690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020572308690

Navigation