Skip to main content
Log in

Solution structure of fatty acid-binding protein from human brain

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human brain-type fatty acid-binding protein (B-FABP) has been recombinantly expressed in Escherichia coli both unlabelled and 15N-enriched for structure investigation in solution using high-resolution NMR spectroscopy. The sequential assignments of the 1H and 15N resonances were achieved by applying multidimensional homo- and heteronuclear NMR experiments. The ensemble of the 20 final energy-minimized structures, representing human B-FABP in solution, have been calculated based on a total of 2490 meaningful distance constraints. The overall B-FABP structure exhibits the typical backbone conformation described for other members of the FABP family, consisting of ten antiparallel β-strands (βA to βJ) that form two almost orthogonal β-sheets, a helix-turn-helix motif that closes the β-barrel on one side, and a short N-terminal helical loop. A comparison with the crystal structure of the same protein complexed with docosahexaenoic acid [12] reveals only minor differences in both secondary structure and overall topology. Moreover, the NMR data indicate a close structural relationship between human B-FABP and heart-type FABP with respect to fatty acid binding inside the protein cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veerkamp JH, Maatman RGHJ: Cytoplasmic fatty acid-binding proteins: Their structure and genes. Prog Lipid Res 34: 17–52, 1995

    Google Scholar 

  2. Hohoff C, Spener F: Fatty acid binding proteins and mammaryderived growth inhibitor. Fett Lipid 100: 252–263, 1998

    Google Scholar 

  3. Veerkamp JH, Zimmerman AW: Fatty acid-binding proteins of nervous tissue. J Mol Neurosci 16: 133–142, 2001

    Google Scholar 

  4. Owada Y, Yoshimoto T, Kondo H: Spatio-temporally differential expression of genes for three members of fatty acid binding proteins in developing and mature rat brains. J Chem Neuroanat 12: 113–122, 1996

    Google Scholar 

  5. Feng L, Hatten ME, Heintz N: Brain lipid-binding protein (BLBP): A novel signaling system in the developing mammalian CNS. Neuron 12: 895–908, 1994

    Google Scholar 

  6. Kurtz A, Zimmer A, Schnütgen F, Brüning G, Spener F, Müller T: The expression pattern of a novel gene encoding brain fatty-acid binding protein correlates with neuronal and glial cell development. Development 120: 2637–2649, 1994

    Google Scholar 

  7. Godbout R, Bisgrove DA, Shkolny D, Day RS: Correlation of BFABP and GFAP expression in malignant glioma. Oncogene 16: 1955–1963, 1998

    Google Scholar 

  8. Xu LZ, Sánchez R, Sali A, Heintz N: Ligand specificity of brain lipid-binding protein. J Biol Chem 271: 24711–24719, 1996

    Google Scholar 

  9. Richieri GV, Ogata RT, Zimmerman AW, Veerkamp JH, Kleinfeld AM: Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry 39: 7197–7204, 2000

    Google Scholar 

  10. Zimmerman AW, van Moerkerk HTB, Veerkamp JH: Ligand specificity and conformational stability of human fatty acid-binding proteins. Int J Biochem Cell Biol 33: 865–876, 2001

    Google Scholar 

  11. Green P, Glozman S, Kamensky B, Yavin E: Developmental changes in rat brain membrane lipids and fatty acids: The preferential prenatal accumulation of docosahexaenoic acid. J Lipid Res 40: 960–966, 1999

    Google Scholar 

  12. Balendiran GK, Schnütgen F, Scapin G, Börchers T, Xhong N, Lim K, Godbout R, Spener F, Sacchettini JC: Crystal structure and thermodynamic analysis of human brain fatty acid-binding protein. J Biol Chem 275: 27045–27054, 2000

    Google Scholar 

  13. Zimmerman AW, Rademacher M, Rüterjans H, Lücke C, Veerkamp JH: Functional and conformational characterization of new mutants of heart fatty acid-binding protein. Biochem J 344: 495–501, 1999

    Google Scholar 

  14. Kay LE, Keifer P, Saarinen T: Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114: 10663–10665, 1992

    Google Scholar 

  15. Schleucher J, Sattler M, Griesinger C: Coherence selection via gradients without loss of sensitivity. The 3D-HNCO experiment. Angew Chem Int Ed Eng 32: 1489–1491, 1993

    Google Scholar 

  16. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD: 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6: 135–140, 1995

    Google Scholar 

  17. Wüthrich K: NMR of Proteins and Nucleic Acids. Wiley, New York, 1986

    Google Scholar 

  18. Pristovšek P, Lücke C, Reincke B, Ludwig B, Rüterjans H: Solution structure of the functional domain of Paracoccus denitrificans cytochrome c 552 in the reduced state. Eur J Biochem 267: 4205–4212, 2000

    Google Scholar 

  19. Güntert P, Mumenthaler C, Wüthrich K: Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273: 283–298, 1997

    Google Scholar 

  20. Güntert P, Braun W, Wüthrich K: Efficient computation of threedimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol 217: 517–530, 1991

    Google Scholar 

  21. Wüthrich K, Billeter M, Braun W: Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol 169: 949–961, 1983

    Google Scholar 

  22. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff DJ, Genest M, Hagler AT: Structure and energetics of ligand binding to proteins: E. coli dihydrofolate reductase trimethoprin, a drugreceptor system. Proteins 4: 31–47, 1988

    Google Scholar 

  23. Laskowski RA, MacArthur MW, Moss DS, Thornton JM: AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J Appl Crystallogr 26: 283–291, 1993

    Google Scholar 

  24. Noy N: Retinoid-binding proteins: Mediators of retinoid action. Biochem J 348: 481–495, 2000

    Google Scholar 

  25. Folli C, Calderone V, Ottonello S, Bolchi A, Zanotti G, Stoppini M, Rudolfo B: Identification, retinoid binding, and X-ray analysis of a human retinol-binding protein. Proc Natl Acad Sci USA 98: 3710–3715, 2001

    Google Scholar 

  26. Lücke C, Pérez C, Cavazzini D, Rademacher M, Ludwig C, Spisni A, Rossi GL, Rüterjans H: Structure and backbone dynamics of apo-and holo-cellular retinol-binding protein in solution. J Biol Chem 277: 21983–21997, 2002

    Google Scholar 

  27. Gutiérrez-González LH, Ludwig C, Hohoff C, Rademacher M, Hanhoff T, Rüterjans H, Spener F, Lücke C: Solution structure and backbone dynamics of human epidermal-type fatty acid-binding protein (E-FABP). Biochem J 364: 725–737, 2002

    Google Scholar 

  28. Hodsdon ME, Cistola DP: Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acidbinding protein: Implications for the mechanism of ligand entry. Biochemistry 36: 1450–1460, 1997

    Google Scholar 

  29. Zhang F, Lücke C, Baier LJ, Sacchettini JC, Hamilton JA: Solution structure of human intestinal fatty acid-binding protein: Implications for ligand entry and exit. J Biomol NMR 9: 213–228, 1997

    Google Scholar 

  30. Lücke C, Zhang F, Rüterjans H, Hamilton JH, Sacchettini JC: Flexibility is a likely determinant of binding specificity in the case of ileal lipid binding protein. Structure 4: 785–800, 1996

    Google Scholar 

  31. Lu J, Lin C-L, Tang C, Ponder JW, Kao JLF, Cistola DP, Li E: The structure and dynamics of rat apo-cellular retinol-binding protein II in solution: Comparison with the X-ray structure. J Mol Biol 286: 1179–1195, 1999

    Google Scholar 

  32. Wang L, Li Y, Abildgaard F, Markley JL, Yan H: NMR solution structure of type II human cellular retinoic acid binding protein: Implications for ligand binding. Biochemistry 37: 12727–12736, 1998

    Google Scholar 

  33. Constantine KL, Friedrichs MS, Wittekind M, Jamil H, Chu CH, Parker RA, Goldfarb V, Mueller L, Farmer BT: Backbone and side chain dynamics of uncomplexed human adipocyte and muscle fatty acid-binding proteins. Biochemistry 37: 7965–7980, 1998

    Google Scholar 

  34. Lassen D, Lücke C, Kveder M, Mesgarzadeh A, Schmidt JM, Specht B, Lezius A, Spener F, Rüterjans H: Three-dimensional structure of bovine heart fatty-acid-binding protein with bound palmitic acid, determined by multidimensional NMR spectroscopy. Eur J Biochem 230: 266–280, 1995

    Google Scholar 

  35. Lücke C, Rademacher M, Zimmerman AW, van Moerkerk HTB, Veerkamp JH, Rüterjans H: Spin-system heterogeneities indicate a selected-fit mechanism in fatty acid binding to heart-type fatty acid-binding protein (H-FABP). Biochem J 354: 259–266, 2001

    Google Scholar 

  36. Wishart DS, Sykes BD, Richards FM: Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222: 311–333, 1991

    Google Scholar 

  37. Lücke C, Huang S, Rademacher M, Rüterjans H: New insights into intracellular lipid binding proteins: The role of buried water. Prot Sci (in press)

  38. Young ACM, Scapin G, Kromminga A, Patel SB, Veerkamp JH, Sacchettini JC: Structural studies on human muscle fatty acid binding protein at 1.4 Å resolution: Binding interactions with three C18 fatty acids. Structure 2: 523–534, 1994

    Google Scholar 

  39. Kraulis PJ: MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946–950, 1991

    Google Scholar 

  40. Merritt EA, Bacon DJ: Raster3D: Photorealistic molecular graphics. Meth Enzymol 277: 505–524, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rademacher, M., Zimmerman, A.W., Rüterjans, H. et al. Solution structure of fatty acid-binding protein from human brain. Mol Cell Biochem 239, 61–68 (2002). https://doi.org/10.1023/A:1020566909213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020566909213

Navigation