Antonie van Leeuwenhoek

, 81:509 | Cite as

Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms

  • George. A. Kowalchuk
  • Douwe S. Buma
  • Wietse de Boer
  • Peter G.L. Klinkhamer
  • Johannes A. van Veen
Article

Abstract

A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive below-ground microbial diversity, but to date very little is known as to how plant species composition and diversity influence the community composition of micro-organisms in the soil. We examined this relationship in fields subjected to different above-ground biodiversity treatments and in field experiments designed to examine the influence of plant species on soil-borne microbial communities. Culture-independent strategies were applied to examine the role of wild or native plant species composition on bacterial diversity and community structure in bulk soil and in the rhizosphere. In comparing the influence of Cynoglossum officinale (hound's tongue) and Cirsium vulgare (spear thistle) on soil-borne bacterial communities, detectable differences in microbial community structure were confined to the rhizosphere. The colonisation of the rhizosphere of both plants was highly reproducible, and maintained throughout the growing season. In a separate experiment, effects of plant diversity on bacterial community profiles were also only observed for the rhizosphere. Rhizosphere soil from experimental plots with lower macrophyte diversity showed lower diversity, and bacterial diversity was generally lower in the rhizosphere than in bulk soil. These results demonstrate that the level of coupling between above-ground macrophyte communities and below-ground microbial communities is related to the tightness of the interactions involved. Although plant species composition and community structure appear to have little discernible effect on microbial communities inhabiting bulk soil, clear and reproducible changes in microbial community structure and diversity are observed in the rhizosphere.

16S rDNA biodiversity collector's curve PCR-DGGE 

References

  1. Amann R, Ludwig W & Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual cells without cultivation. Microbiol. Rev. 59: 143–169.PubMedGoogle Scholar
  2. Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS & Davies WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct. Ecol. 13: 650–660.CrossRefGoogle Scholar
  3. Berendse F (1999) Implications of increased litter production for plant biodiversity. Trends Ecol. Evol. 14: 4–5.PubMedCrossRefGoogle Scholar
  4. Berendse F (1990) Organic-matter accumulation and nitrogen mineralization during secondary succession in healthland ecosystems. J. Ecol. 78: 413–427.CrossRefGoogle Scholar
  5. Bever JD (1994) Feedback between plants and their soil communities in an old field community. Ecology 75: 1965–1977.CrossRefGoogle Scholar
  6. Borneman J, Skroch PW, O'Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J & Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl. Environ. Microbiol. 62: 1935–1943.PubMedGoogle Scholar
  7. Broughton LC, Gross KL (2000) Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125: 420–427.CrossRefGoogle Scholar
  8. Duineveld BM, Rosado AS, Van Elsas JD & Van Veen JA (1998) Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl. Environ. Microbiol. 64: 4950–4957.PubMedGoogle Scholar
  9. Duineveld BM, Kowalchuk GA, Keizer A, Van Elsas JD & Van Veen JA (2001) Analysis of the bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR amplified 16S ribosomal RNA and DNA fragments. Appl. Environ. Microbiol. 67: 172–178.PubMedCrossRefGoogle Scholar
  10. Dykhuizen DE (1998) Santa Rosalia revisited: Why are there so many species of bacteria? Antonie van Leeuwenhoek 73: 25–33.PubMedCrossRefGoogle Scholar
  11. Edwards U, Rogall T, Blöcker H, Emde M & Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843–7853.PubMedGoogle Scholar
  12. Felske A & Akkermans ADL (1998) Spatial homogeneity of abundant bacterial 16S RRNA molecules in grassland soils. Microb. Ecol. 36: 31–36.PubMedCrossRefGoogle Scholar
  13. Germida JJ, Siciliano SD, De Freitas RJ & Seib AM (1998) Diversity of root-associated bacteria associated with filed-grown canola Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol. 26: 43–50.CrossRefGoogle Scholar
  14. Grayston SJ, Wang S, Campbell CD & Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30: 369–378.CrossRefGoogle Scholar
  15. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, et al. (1999) Plant diversity and productivity experiments in European grasslands. Science 286: 1123–1127.PubMedCrossRefGoogle Scholar
  16. Hedrick DB, Peacock A, Stephen JR, Macnaughton SJ, Bruggemann J & White DC (2000) Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data. J. Microbiol. Methods 41: 235–248.PubMedCrossRefGoogle Scholar
  17. Heuer H, Krsek M, Baker P, Smalla K & Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233–3241.PubMedGoogle Scholar
  18. Heuer H, Hartung K, Wieland G, Kramer I & Smalla K (1999) Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community profiles. Appl. Environ. Microbiol. 65: 1045–1049.PubMedGoogle Scholar
  19. Hooper DU & Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277: 1302–1305.CrossRefGoogle Scholar
  20. Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449–460.CrossRefGoogle Scholar
  21. Insam H & Domsch KH (1988) Relationship between soil organiccarbon and microbial biomass on chronosequences of reclamation sites. Microb. Ecol. 15: 177–188.CrossRefGoogle Scholar
  22. Korona R, Nakatsu CH, Forney LJ & Lenski RE (1994) Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proc. Natl. Acad. Sci. USA 91: 9037–9041.PubMedCrossRefGoogle Scholar
  23. Korthals GW, Smilauer P, Van Dijk C & Van Der Putten WH (2001) Linking above-and below-ground biodiversity: abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land. Funct. Ecol. 15: 506–514.CrossRefGoogle Scholar
  24. Kowalchuk GA, Stienstra AW, Heilig GHJ, Stephen JR, & Woldendorp JW (2000b) Composition of communities of ammonium-oxidising bacteria in wet, slightly acid grassland soils using 16S rDNA-analysis. FEMS Microbiol. Ecol. 31: 207–215.PubMedCrossRefGoogle Scholar
  25. Kowalchuk GA, Stienstra AW, Heilig GHJ, Stephen JR & Woldendorp JW (2000a) Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ. Microbiol. 2: 99–110.PubMedCrossRefGoogle Scholar
  26. Krebs CJ (1989) Ecological Methodology. Harper & Row, New York.Google Scholar
  27. Maly S, Korthals GW, Van Dijk C, Van der Putten WH & De Boer W (2000) Effect of vegetation manipulation of abandoned arable land on soil microbial properties. Biol. Fertil. Soils 31: 121–127.CrossRefGoogle Scholar
  28. Marilley L & Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl. Soil Ecol. 13: 127–136.CrossRefGoogle Scholar
  29. McCaig AE, Glover LA & Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl. Environ. Microbiol. 65: 1721–1730.PubMedGoogle Scholar
  30. McCaig AE, Glover LA & Prosser JI (2001) Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl. Environ. Microbiol. 67: 4554–4559.PubMedCrossRefGoogle Scholar
  31. Miethling R, Wieland G, Backhaus H & Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb. Ecol. 41: 43–56.Google Scholar
  32. Miller HJ, Henken G & Van Veen JA (1989) Variation and composition of bacterial populations in the rhizosphere of maize, wheat, and grass cultivars. Can J. Microbiol. 35: 656–660.CrossRefGoogle Scholar
  33. Muyzer G & Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127–141.PubMedCrossRefGoogle Scholar
  34. Muyzer G, DeWaal EC & Uitterlinden AC (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes for 16S rRNA. Appl. Environ. Microbiol. 55: 695–700.Google Scholar
  35. Naeem S & Li SB (1997) Biodiversity enhances ecosystem reliability. Nature 390: 507–509.CrossRefGoogle Scholar
  36. Naeem S, Thompson LJ, Lawler SP, Lawton JH & Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368: 734–737.CrossRefGoogle Scholar
  37. Nogales B, Moore ERB, Llobet-Brossa E, Rossello-Mora R, Amann R & Timmis KN (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl. Environ. Microbiol. 67: 1174–1184.CrossRefGoogle Scholar
  38. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H & Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742–4751.PubMedCrossRefGoogle Scholar
  39. Spehn EM, Joshi J, Schmid B, Alphei J & Körner C (2000) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224: 217–230.CrossRefGoogle Scholar
  40. Stephan A, Meyer AH & Schmid B (2000) Plant diversity affects culturable soil bacteria in experimental grassland communities. J. Ecol. 88: 988–998.CrossRefGoogle Scholar
  41. Stephen JR & Kowalchuk GA (2002) Ribotyping methods for assessment of in situ microbial community structure. In: Gabrielle Bitton (ed.) Encyclopedia of Environmental Microbiology, Volume 5. John Wiley & Sons, New York, USA. pp. 2728–2741.Google Scholar
  42. Tiedje JM (1995) Approaches to the comprehensive evaluation of prokaryote diversity of a habitat. In: Allsopp D, Hawksworth DL, Colwell RR (Eds) Microbial Diversity and Ecosystem Function (pp 73–97). CAB International, Wallingford, UK.Google Scholar
  43. Tiedje JM, Asuming-Brempong, Nüsslein K, Marsh TL & Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl. Soil Ecol. 13: 109–122.CrossRefGoogle Scholar
  44. Tilman D & Downing JA (1994) Biodiversity and stability in grasslands. Nature 367: 363–365.CrossRefGoogle Scholar
  45. Tilman D, Wedin D & Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718–720.CrossRefGoogle Scholar
  46. Tilman D, Knops J, Wedin D, Reich P, Ritchie M & Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277: 1300–1302.CrossRefGoogle Scholar
  47. Torsvik V, Goksoyr J & Daae FL (1990) High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56: 782–787.PubMedGoogle Scholar
  48. Van der Putten WH, Mortimer SR, Hedlund K, Van Dijk C, Brown VK, Leps J, Rodriguez-Barrueco C, Roy J, Len TAD, Gormsen D, Korthals GW, Lavorel S, Regina IS & Smilauer P (2000) Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach. Oecologia 124: 91–99.CrossRefGoogle Scholar
  49. Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. Cambridge Phil. Soc. 67: 321–358.CrossRefGoogle Scholar
  50. Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, Watson RN & Ghani A (1999) Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol. Monogr. 69: 535–568.CrossRefGoogle Scholar
  51. Yin B, Crowley D, Sparovek G, De Melo WJ & Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl. Environ. Microbiol. 66: 4361–4365.PubMedCrossRefGoogle Scholar
  52. Zhou JZ, Davey ME, Figueas JB, Rivkina E, Gilichinsky D & Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143: 3913–3919.PubMedCrossRefGoogle Scholar
  53. Zhou JZ, Xia B, Treves DS, Wu L-Y, Marsh TL, O'Neill RV, Palumbo AV & Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68: 326–334.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • George. A. Kowalchuk
    • 1
  • Douwe S. Buma
    • 1
  • Wietse de Boer
    • 1
  • Peter G.L. Klinkhamer
    • 2
  • Johannes A. van Veen
    • 1
  1. 1.Department of Plant-Microorganism InteractionsNetherlands Institute of Ecology, Centre for Terrestrial EcologyHeterenThe Netherlands
  2. 2.Department of Biology, Research Group Ecology of Plant-Animal InteractionsUniversity of LeidenLeidenThe Netherlands

Personalised recommendations