Bacterial endospores and their significance in stress resistance

Abstract

In terms of resistance to extreme environmental stresses, the bacterial spore represents a pinnacle of evolution. Spores are highly resistant to a wide variety of physical stresses such as: wet and dry heat, UV and gamma radiation, oxidizing agents, chemicals, and extremes of both vacuum and ultrahigh hydrostatic pressure. Some of the molecular mechanisms underlying spore resistance properties have been elucidated in the laboratory, and involve both: (i) protection of vital spore macromolecules during dormancy, and (ii) repair of damaged macromolecules during germination. Our group has recently become interested in testing if the laboratory model of spore UV resistance is relevant to spore persistence in the environment. We have constructed a number of Bacillus subtilis strains which are defective in various DNA repair systems and spore structural components. Using spores of these strains, we have been exploring: (i) the types of damage induced in DNA by the UV-B and UV-A components of sunlight; (ii) the relative contribution of the major spore DNA repair systems to spore solar radiation resistance; and (iii) the role of spore structural components such as the spore coats and dipicolinic acid (DPA) in attenuation of the lethal and mutagenic effects of solar UV. The current data are reviewed with the ultimate goal of obtaining a complete model describing spore persistence and longevity in the terrestrial solar UV radiation environment.

This is a preview of subscription content, log in to check access.

References

  1. Donnellan JE Jr & Setlow RB (1965) Thymine photoproducts but not thymine dimers are found in ultraviolet irradiated bacterial spores. Science 149: 308-310.

    CAS  PubMed  Google Scholar 

  2. Driks A (1999) Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63: 1-20.

    PubMed  CAS  Google Scholar 

  3. Fajardo-Cavazos P & Nicholson (1995) Molecular dissection of mutations in the Bacillus subtilis spore photoproduct lyase gene which affect repair of spore DNA damage caused by UV radiation. J. Bacteriol. 177: 4402-4409.

    PubMed  CAS  Google Scholar 

  4. Fajardo-Cavazos P, Salazar C & Nicholson WL (1993) Molecular cloning and characterization of the Bacillus subtilis spore photoproduct lyase (spl) gene, which is involved in repair of UV-induced DNA damage during spore germination. J. Bacteriol. 175: 1735-1744.

    PubMed  CAS  Google Scholar 

  5. Friedberg EC, Walker GC & Siede W (1995) DNA repair and mutagenesis. American Society for Microbiology, Washington, DC.

    Google Scholar 

  6. Hullo M-F, Moszer I, Danchin A & Martin-Verstraete I (2001) CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183: 5426-5430.

    PubMed  CAS  Article  Google Scholar 

  7. Lindberg C & Horneck G (1991) Action spectra for survival and spore photoproduct formation of Bacillus subtilis irradiated with short wavelength (200-300 nm) UV at atmospheric pressure and in vacuo. J. Photochem. Photobiol. B Biol.11:69-80.

    CAS  Article  Google Scholar 

  8. Lindsay JA & Murrell WG (1983) A comparison of UV-induced DNA photoproducts from isolated and non-isolated bacterial forespores. Biochem. Biophys. Res. Commun. 113: 618-625.

    PubMed  CAS  Article  Google Scholar 

  9. Munakata N & Rupert CS (1975) Effects of DNA-polymerase-defective and recombination-deficient mutations on the ultraviolet sensitivity of Bacillus subtilis spores. Mutat. Res. 27: 157-169.

    PubMed  CAS  Article  Google Scholar 

  10. Nicholson WL, Chooback L & Fajardo-Cavazos (1997) Analysis of spore photoproduct lyase operon (splAB) function using targeted deletion-insertion mutations spanning the Bacillus subtilis operons ptsHI and splAB. Mol. Gen. Genet. 255: 587-594.

    PubMed  CAS  Article  Google Scholar 

  11. Nicholson WL & Fajardo-Cavazos P (1997) DNA repair and the ultraviolet radiation resistance of bacterial spores: from the laboratory to the environment. Recent Res. Devel. Microbiol. 1: 125-140.

    Google Scholar 

  12. Nicholson WL, Munakata N, Horneck G, Melosh HJ & Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Molec. Biol. Rev. 64: 548-572.

    CAS  Article  Google Scholar 

  13. Nicholson WL & Setlow (1990) Sporulation, germination, and outgrowth. In: Harwood CR & Cutting SM (Eds) Molecular Biological Methods for Bacillus (pp 391-450). John Wiley and Sons, Sussex, UK.

    Google Scholar 

  14. Paidhungat M, Setlow B, Driks A & Setlow P (2000) Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J. Bacteriol. 182: 5505-5512.

    PubMed  CAS  Article  Google Scholar 

  15. Riesenman PJ & Nicholson WL (2000) Role of the spore coat layers in Bacillus subtilis resistance to hydrogen peroxide, artificial UVC, UV-B, and solar radiation. Appl. Environ. Microbiol. 66: 620-626.

    PubMed  CAS  Article  Google Scholar 

  16. Schaeffer P, Millet J & Aubert JP (1965) Catabolic repression of bacterial sporulation. Proc. Natl. Acad. Sci. USA 54:704-711.

    PubMed  CAS  Article  Google Scholar 

  17. Setlow P (1995) Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu. Rev. Microbiol. 49:29-54.

    PubMed  CAS  Article  Google Scholar 

  18. Setlow P (2001) Resistance of spores of Bacillus species to ultraviolet light. Environ. Mol. Mutagen. 38: 97-104.

    PubMed  CAS  Article  Google Scholar 

  19. Slieman TA & Nicholson WL (2000) Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA. Appl. Environ. Microbiol. 66: 199-205.

    PubMed  CAS  Article  Google Scholar 

  20. Slieman TA & Nicholson WL (2001) Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation. Appl. Environ. Microbiol. 67: 1274-1279.

    PubMed  CAS  Article  Google Scholar 

  21. Somerville HJ, Delafield FP & Rittenberg SC (1970) Ureamercaptoethanol-soluble protein from spores of Bacillus thuringiensis and other species. J. Bacteriol. 101: 551-560.

    PubMed  CAS  Google Scholar 

  22. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. Natl. Acad. Sci. USA 44: 548-572.

    Article  Google Scholar 

  23. Tanooka H (1968) Ultraviolet resistance of DNA in spore spheroplast of Bacillus subtilis as measured by the transforming activity. Biochim. Biophys. Acta 166: 581-583.

    PubMed  CAS  Google Scholar 

  24. Tanooka H & Sakakibara Y (1968) Radioresistant nature of the transforming activity in bacterial spores. Appl. Microbiol. 26: 592-597.

    Google Scholar 

  25. Tyrrell RM (1978) Solar dosimetry with repair deficient bacterial spores: action spectra, photoproduct measurements and a comparison with other biological systems. Photochem. Photobiol. 27: 571-579.

    PubMed  CAS  Google Scholar 

  26. Tyrrell RM (1992) Inducible responses to UV-A exposure. In: Urbach F (Ed) Biological Responses to Ultraviolet-A Radiation (pp 59-64). Valdenmar Publishing, Overland Park, Kansas.

    Google Scholar 

  27. Xue Y (1996) Resistance of Bacillus subtilis spores lacking either nucleotide excision repair or spore photoproduct lyase to ultraviolet (UV) radiation from artificial or natural sources. Thesis (Master of Science), University of North Texas Health Science Center.

  28. Xue Y & Nicholson WL (1996) The two major spore DNA repair pathways, nucleotide excision repair and spore photoproduct lyase, are sufficient for the resistance of Bacillus subtilis spores to artificial UV-C and UV-B but not to solar radiation. Appl. Environ. Microbiol. 62: 2221-2227.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wayne L. Nicholson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nicholson, W.L., Fajardo-Cavazos, P., Rebeil, R. et al. Bacterial endospores and their significance in stress resistance. Antonie Van Leeuwenhoek 81, 27–32 (2002). https://doi.org/10.1023/A:1020561122764

Download citation

  • Bacillus subtilis
  • DNA repair
  • environmental resistance
  • spore
  • ultraviolet (UV) radiation