Skip to main content
Log in

Pyrrolizidine Alkaloids from Senecio jacobaea Affect Fungal Growth

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We investigated the growth-reducing effects of pyrrolizidine alkaloids (PAs) from Senecio jacobaea on nine plant-associated fungi (five strains of Fusarium oxysporum, two of F. sambucinum, and two of Trichoderma sp). Fungal growth was monitored on water agar media containing different concentrations of monocrotaline, retrorsine, or a purified extract of PAs from S. jacobaea. The growth rate of six strains was inhibited by PAs at the highest test concentration (3.33 mM), with the magnitude of the inhibition (7–35%) being dependent upon the specific fungus-PA interaction. In general, the PA extract caused the largest inhibition. However, the fungi isolated from S. jacobaea were positively affected by the PA extract (7–9%). Retrorsine N oxide was as effective as retrorsine in its inhibition of mycelium growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Asplund, P. T. and Curtis, W. R. 2001. Intrinsic oxygen use kinetics of transformed plant root culture. Biotechnol. Progr.17:481–489.

    Google Scholar 

  • BopprÉ, M. 1986. Insect pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften73:17–26.

    Google Scholar 

  • Campesato, V. R., Graf, U., Reguly, M. L., and De Andrade, H. H. R. 1997. Recombinagenic activity of integerrimine, a pyrrolizidine alkaloid from Senecio brasiliensis, in somatic cells of Drosphila melanogaster. Environ. Mol. Mutagen29:91–97.

    Google Scholar 

  • Cheeke, P. R. 1994. A review of the functional and evolutionary roles of the liver in detoxification of poisonous plants, with special reference to pyrrolizidine alkaloids. Vet. Hum. Toxicol. 36:240–247.

    Google Scholar 

  • Ehrlich, P. R. and Raven, P. H. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608.

    Google Scholar 

  • Hartmann, T. 1999. Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495.

    Google Scholar 

  • Hartmann, T. and Toppel, G. 1987. Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Phytochemistry26:1639–1643.

    Google Scholar 

  • Hartmann, T. and Witte, L. 1995. Pyrrolizidine alkaloids: chemical, biological and chemoecological aspects, pp 155–233. in S. W. Pelletier (ed.). Alkaloids: Chemical and Biological Perspectives, Vol 9. Pergamon Press, Oxford.

    Google Scholar 

  • Hartmann, T., Ehmke, A., Eilert, U., VonBorstel, K., and Theuring, C. 1989. Site of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris L. Planta 177:98–107.

    Google Scholar 

  • Huan, J. Y., Miranda, C. L., Buhler, D. R., and Cheeke, P. R. 1998. The roles of CYP3A and CYP2B isoforms in hepatic bioactivation and detoxification of the pyrrolizidine alkaloid senecionine in sheep and hamsters. Toxicol. Appl. Pharmacol 151:229–235.

    Google Scholar 

  • Jain, S. C. and Sharma, R. 1987. Antimicrobial activity of pyrrolizidine alkaloids from Heliotropium ellipticum. Chem. Pharm. Bull. 35:3487–3489.

    Google Scholar 

  • Kiprono, P. C., Kabeia, F., Keriko, J. M., and Karanja, J. N. 2000. The in vitro antifungal and anti-bacterial activities of beta-sitosterol from Senecio lyratus (Asteraceae). Z. Naturforsch. 55:485–488.

    Google Scholar 

  • Koekemoer, M. J. and Warren, F. L. 1951. The Senecio alkaloids. Part VIII. The occurrence and preparation of N-oxides. An improved method of extraction of the Senecio alkaloids. J. Chem. Soc. 951:66–68.

    Google Scholar 

  • Marquina, G., Laguna, A., Franco, P., Fernandez, L., Perez, P., and Valiente, O. 1989. Antimicrobial activity of pyrrolizidine alkaloids from Heliotropium bursiferum Wr ex Grisebach. Pharmazie 44:870–871.

    Google Scholar 

  • Mattocks, R.A. 1967. Spectrophotometric determination of unsaturated pyrrolizidine alkaloids. Anal. Chem. 34:443–447.

    Google Scholar 

  • Mattocks, R. A. 1986. Chemistry and Toxicology of Pyrrolizidine Alkaloids. Academic Press, London, pp. 42–45.

    Google Scholar 

  • Molyneux, R. J., Johnson, A. E., Olsen, J. D., and Baker, D. C. 1991. Toxicity of pyrrolizidine alkaloids from riddel groundsel (Senecio riddellii) to cattle. Am. J. Vet. Res. 52:146–151.

    Google Scholar 

  • Morrissey, J. P. and Osbourn, A. E. 1999. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Rev. 63:708–724.

    Google Scholar 

  • Perez, C., Agnese, A. M., and Cabrera, J. L. 1999. The essential oil of Senecio graveolens (Compositae): chemical composition and antimicrobial activity tests. J. Ethnopharmacol. 66:91–96.

    Google Scholar 

  • Reina, M., Mericli, A. H., Cabrera, R., and Gonzalez-Coloma, A. 1995. Pyrrolizidine alkaloids from Heliotropium bovei. Phytochemistry38:355–358.

    Google Scholar 

  • Reina, M., Gonzalez-Coloma, A., Gutierrez, C., Cabrera, R., Henriquez, J., and Villarroel, L. 1997.Bioactive saturated pyrrolizidine alkaloids from Heliotropium floridium. Phytochemistry 46:845–853.

    Google Scholar 

  • Sander, H. and Hartmann, T. 1989. Site of synthesis, metabolism and translocation of senecionine N-oxide in cultured roots of Senecio erucifolius. Plant Cell Tiss. Org.18:19–31.

    Google Scholar 

  • Schmeller, T., El-Shazly, A., and Wink, M. 1997. Allelochemical activities of pyrrolizidine alkaloids: interactions with neuroreceptors and acetylcholine related enzymes. J. Chem. Ecol. 23:399–417.

    Google Scholar 

  • Schneider, D. 1987. The strange fate of pyrrolizidine alkaloids, pp 123–142, in R. F. Chapman, E. A. Beranys and J. G. Stoffelano (eds.). Perspectives in Chemoreception and Behavior. Springer, New York.

    Google Scholar 

  • SPSS Inc. 1998. SPSS Base 8.0 Windows User' Guide, Chicago, Illinois.

  • Tinney, G., Theuring. C., Paul, N., and Hartmann, T. 1998. Effects of rust infection with Puccinia lagenophorae on pyrrolizidine alkaloids in Senecio vulgaris. Phytochemistry49:1589–1592.

    Google Scholar 

  • Van Dam N. M., Vuister L. W. M., Bergshoeff, C., De Vos, H., and Van Der Meijden, E. 1995. The raison d'etre of pyrrolizidine alkaloids in Cynoglossum offinicale–deterrent effects against generalist herbivores. J. Chem. Ecol. 21:507–523.

    Google Scholar 

  • Vrieling, K., Soldaat, L., and Smit, W. 1991. The influcence of pyrrolizidine alkaloids on Tyria jacobaeae, Brachycauduscardii and Haplothrips senecionis. Neth. J. Zool.42:228–239.

    Google Scholar 

  • Vrieling, K., De Vos, H., and Van Wijk, C. A. M. 1993. Genetic analysis of the concentrations of pyrrolizidine alkaloids in Senecio jacobaea. Phytochemistry32:1141–1144.

    Google Scholar 

  • Wink, M., Schmeller, T., and Latz-BrÚning, B. 1998. Modes of actions of allelochemical alkaloids: interaction with neuroreceptors, DNA, and other molecular targets. J. Chem. Ecol. 24:1881–1909.

    Google Scholar 

  • Witte, L., Adam, H., and Hartmann, T. 1992. Chemotypes of two pyrrolizidine alkaloid-containing Senecio species. Phytochemistry 31:559–565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. G. Hol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hol, W.H.G., Van Veen, J.A. Pyrrolizidine Alkaloids from Senecio jacobaea Affect Fungal Growth. J Chem Ecol 28, 1763–1772 (2002). https://doi.org/10.1023/A:1020557000707

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020557000707

Navigation