Skip to main content
Log in

Reduction of CoMoO4 and NiMoO4: in situ Time-Resolved XRD Studies

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

One method frequently employed for the preparation of active oxide catalysts consists of partial reduction under hydrogen at elevated temperatures. In this process, it is important to identify well-defined suboxides that can have high catalytic activity and are stable at the elevated temperatures typical of many catalytic reactions. Our results for the reaction of H2 with α-NiMoO4 and β-CoMoO4 show that in situ time-resolved X-ray diffraction is a powerful technique to study the reduction/activation of mixed-metal oxides. It is clearly shown that the mechanism for the reduction of a mixed-metal oxide catalyst can exhibit drastic changes with respect to that observed for simple metal oxide catalysts. The generation of stable suboxides is difficult to predict. Thus, the reaction of H2 with α-NiMoO4 does not lead to formation of a well-ordered NiMoO x intermediate. On the other hand, during the reduction of β-CoMoO4, Co2Mo3O8 and/or CoMoO3 are formed. These chemical transformations are accompanied by changes in the line shape and position of the Mo LII-edge in XANES and affect the behavior of reduced NiMoO4 and CoMoO4 catalysts. Induction times were detected in the reduction process of CoMoO4. From the present results and data previously reported for NiO, it is clear that this phenomenon should be taken into consideration when aiming at the activation of oxide catalysts via reduction in H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Thomas and W.J. Thomas, Principles and Practice of Heterogeneous Catalysis (VCH, New York, 1997).

    Google Scholar 

  2. H.H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis (Elsevier, New York, 1989).

    Google Scholar 

  3. B. Delmon in: Handbook of Heterogeneous Catalysis, eds. G. Ertl, H. Knözinger and J. Weitkamp (VCH-Wiley, New York, 1997) p. 264.

    Google Scholar 

  4. V.E. Henrich and P.A. Cox, The Surface Science of Oxides (Cambridge University Press, Cambridge, UK, 1994).

    Google Scholar 

  5. T. Ressler, R.E. Jentoft, J. Wienold, M.M. Günter and O. Timpe, J. Phys. Chem. B 104 (2000) 6360.

    Google Scholar 

  6. J.A. Rodriguez, J.C. Hanson, A. Frenkel, J.-Y. Kim and M. Perez, J. Am. Chem. Soc. 124 (2002) 346.

    Google Scholar 

  7. P. Norby and J. Hanson, Catal. Today 39 (1998) 301 and references therein.

    Google Scholar 

  8. J. Zou and G.L. Schrader, J. Catal. 161 (1996) 667; (b) J. Miller, A.G. Sault, N.B. Jackson, L. Evans and M.M. Gonzales, Catal. Lett. 58 (1999) 147.

    Google Scholar 

  9. J.L. Brito and A.L. Barbosa, J. Catal. 171 (1997) 467 and references therein.

    Google Scholar 

  10. J.L. Brito, J. Laine and K.C. Pratt, J. Mater. Sci. 24 (1989) 425.

    Google Scholar 

  11. J.A. Rodriguez, J.C. Hanson, S. Chaturvedi, A. Maiti and J.L. Brito, J. Chem. Phys. 112 (2000) 935.

    Google Scholar 

  12. J.A. Rodriguez, J.C. Hanson, S. Chaturvedi, A. Maiti and J.L. Brito, J. Phys. Chem. B 104 (2000) 8145.

    Google Scholar 

  13. N.M. Rodriguez, S.L. Soled and J. Hrbek, eds, Recent Advances in Catalytic Materials, MRS Symposium Proceedings, Vol. 497 (Materials Research Society, Pittsburgh, PA, 1998).

    Google Scholar 

  14. Symposium on the Characterization of Mixed-Metal Oxide Catalysts, 215th National Meeting of the American Chemical Society, Dallas, TX, March–April 1998.

  15. P.J. Chupas, M.F. Ciraolo, J.C. Hanson and C.P. Grey, J. Am. Chem. Soc. 123 (2001) 1694.

    Google Scholar 

  16. B.S. Clausen, G. Steffensen, B. Fabius, J. Villadsen, R. Freidenhans and H. Topsoe, J. Catal. 132 (1991) 524.

    Google Scholar 

  17. A.P. Hammersely, S.O. Svensson and A. Thompson, Nucl. Instrum. Meth. Phys. Res. 346 (1994) 321.

    Google Scholar 

  18. A.C. Larson and R.B. von Dreele, GSAS—General Structure Analysis System, Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM, 1995.

    Google Scholar 

  19. R. Burch, J. Chem. Soc., Faraday Trans. I 74 (1978) 2982.

    Google Scholar 

  20. J. Sloczynski and W. Bobinski, J. Solid State Chem. 92 (1991) 420; (b) A. Ueno, Y. Kotera, S. Okuda and C.O. Bennet, in: Proceedings of the 4th International Conference on the Chemistry and Uses of Molybdenum, eds. H.F. Barry and P.C.H. Mitchell (Climax Molybdenum Co., Ann Arbor, 1982), p. 250; (c) L. Kihlborg, Archiv. Kemi. 21 (1963) 443; (d) J. Haber in: Proceedings of the 2nd International Conference on the Chemistry and Uses of Molybdenum, ed. P.C.H. Mitchell (Climax Molybdenum Co., London, 1977), p. 119; (e) P. Arnoldy, J.C.M. de Jonge and J.A. Moulijn, J. Phys. Chem. 89 (1985) 4517.

    Google Scholar 

  21. J.A. Rodriguez, S. Chaturvedi, J.C. Hanson, A. Albornoz and J.L. Brito, J. Phys. Chem. B 102 (1998) 1347.

    Google Scholar 

  22. L.M. Madeira, M.F. Portela, C. Mazzochia, A. Kaddouri and R. Anouchinsky, Catal. Today 40 (1998) 229.

    Google Scholar 

  23. J. Haber and J. Janas, in: Reaction Kinetics in Heterogeneous Chemical Systems, ed. P. Barret (Elsevier, Amsterdam, 1975), p. 737; (b) W.H. McCarroll, L. Katz and R. Ward, J. Am. Chem. Soc. 79 (1966) 5410.

    Google Scholar 

  24. JCPDS Powder Diffraction File No. 4-850. International Centre for Diffraction Data, Swarthmore, PA 1989; PDF No 3-1036; PDF No 4-850; PDF No 44-1159.

  25. J.A. Rodriguez, S. Chaturvedi, J.C. Hanson and J.L. Brito, J. Phys. Chem. B 103 (1999) 770.

    Google Scholar 

  26. J.G. Chen, Surf. Sci. Reports 30 (1997) 1.

    Google Scholar 

  27. P. Bautry, P. Courty, J.-C. Daumas and R. Montarnal, Bull. Soc. Chim. France (1968) 4050.

  28. PDF No 43-1004.

  29. R.P. Furstenau, G. McDougall and M.A. Langell, Surf. Sci. 150 (1985) 55.

    Google Scholar 

  30. J.G. Chen, D.A. Fischer, J.H. Hardenbergh and R.B. Hall, Surf. Sci. 279 (1992) 13.

    Google Scholar 

  31. J.L. Brito, A.L. Barbosa, A. Albornoz, F. Severino and J. Laine, Catal. Lett. 26 (1994) 329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, J.A., Kim, J.Y., Hanson, J.C. et al. Reduction of CoMoO4 and NiMoO4: in situ Time-Resolved XRD Studies. Catalysis Letters 82, 103–109 (2002). https://doi.org/10.1023/A:1020556528042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020556528042

Navigation