Skip to main content
Log in

The Paths of Excitation Energy Deactivation in LH1 Reduced Mutant and Wild-Type Strains of Rhodobacter sphaeroides

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The P3 mutant of Rhodobacter sphaeroides had an altered ratio of reaction center to core (LH1) and peripheral (LH2) antenna complexes compared to the wild-type strain. Intracytoplasmic membranes from these two strains were purified and then resuspended in buffer or immobilized in isotropic and stretched polymer film. The absorption, photoacoustic, and delayed luminescence spectra were measured. The ratios of infrared absorption and photoacoustic bands (located at about 880 nm for LH1 and at 850 and about 800 nm for LH2) as well as the half-width of these bands are different for the LH2 and LH1 mutants and wild-type strain. The whole yields of thermal deactivation of the two strains were comparable, but in the absorption region of LH2 it was slightly lower in the case of the mutant than for the wild-type strain. The delayed luminescence main maxima were observed at about 860 and 700 nm. The first one could be due to emission of bacteriochlorophyll a of LH2 complexes. The emission at about 700 nm is probably due to dihydromesochlorophyll, which is usually, to some extent, produced from bacteriochlorophyll a in bacterial complexes. The delayed luminescence emission is competing with excitation energy transfer to the reaction center. The intensity of the delayed luminescence of the mutant strain was higher than that of the wild-type strain when both samples were excited in a region of carotenoid absorption. The mutant contains less carotenoids than the wild-type strain. Carotenoids work as efficient antenna. When they at a lower concentration the excitation can be trapped more easily by some chlorophyll-like pigment isolated from the excitation energy chain. The dependences of delayed luminescence spectra on the light polarization and excitation wavelengths for the wild-type strain and for the mutant were different. The anisotropy of delayed luminescence showed that bacteriochlorophyll a molecules of different orientations were contributing to the mutant and the wild-type strain emission. All the results suggest that the excitation energy transfer from the antenna to the reaction center in the mutant and the wild-type strain is similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Francke and J. Amesz (1995) Photosynth. Res. 46, 347–352.

    Google Scholar 

  2. P. McGlynn, W. H. J. Westerhuis, M. R. Jones, and C. N. Hunter (1996) J. Biol. Chem. 271, 3885–3892.

    Google Scholar 

  3. J. Aagaard and W. R. Sistrom (1972) Photochem. Photobiol. 15, 209–225.

    Google Scholar 

  4. T. G. Monger and W. W. Parson (1977) Biochim. Biophys. Acta 460, 393–407.

    Google Scholar 

  5. L. Vasilyeva, M. Hara, M. Miyake, E. Nakada, Y. Asada, and J. Miyake (1997) in Book of Abstracts for IX International Symposium on Phototropic Prokaryotes, Sept. 6–13, Vienna, Austria, p. 106.

  6. L. Vasilieva, M. Miyake, E. Nakada, Y. Asada, and J. Miyake (1999) in O. R. Zaborski et al. (Eds.), BioHydrogen, Plenum Press, New York.

    Google Scholar 

  7. S. Hess, K. Visschler, J. Ulander, T. Pulleris, M. R. Jones, C. N. Nunter, and V. Sunström (1993) Biochemistry 32, 10314–10322.

    Google Scholar 

  8. H. Kramer, M. R. Jones, G. J. S. Fowler, C. Francke, T. J. Aartsma, C. N. Hunter, and J. Amesz (1995) Biochim. Biophys. Acta 1231, 89–97.

    Google Scholar 

  9. S. W. Mainhardt, P. J. Kiley, S. Kaplan, A. R. Crofts, and S. Harayama (1985) Arch. Biochem. Biophys. 236, 130–139.

    Google Scholar 

  10. L. Vasilyeva M. Miyake, M. Hara, E. Nakada, S. Nishikata, Y. Asada, and J. Miyake (1998) in O. R. Zaborsky et al. (Eds.), BioHydrogen, Plenum Press, New York.

    Google Scholar 

  11. T. Martyński, D. Fr{ie355-1}ckowiak, J. Miyake, A. Dudkowiak, and A. Piechowiak (1998) J. Photochem. Photobiol. B Biol. 42, 57–66.

    Google Scholar 

  12. J. R. Lakowicz (1983) Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  13. M. M. Bradford (1976) Anal. Biochem. 72, 248–254.

    Google Scholar 

  14. P. A. Loach and P. S. Parkes-Loach (1995) in R. E. Blankenship et al. (Eds.), Anoxygenic Photosynthetic Bacteria, Kluwer Scientific, Dordrecht, The Netherlands, pp. 437–471.

    Google Scholar 

  15. D. Fr{ie355-2}ckowiak, S. Hotchandani, and R. M. Leblanc (1985) Photochem. Photobiol. 42, 559–565.

    Google Scholar 

  16. K. Fiksiński and D. Fr{ie355-3}ckowiak (1980) Spectrosc. Lett. 13, 873–889.

    Google Scholar 

  17. G. Mc Dermott, S. M. Prince, A. A. Freer, A. M. Hafthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell, and N. W. Isaacs (1995) Nature 374, 517–521.

    Google Scholar 

  18. B. Norden (1978) Appl. Spectrosc. Rev. 14, 157–248.

    Google Scholar 

  19. D. Ducharme, A. Tessier, and R. M. Leblanc (1979) Rev. Sci. Instrum. 50, 1461–1462.

    Google Scholar 

  20. A. Planner and D. Fr{ie355-4}ckowiak (1991) Photochem. Photobiol. 54, 445–451.

    Google Scholar 

  21. D. Fr{ie355-5}ckowiak, A. Dudkowiak, B. Zelent, and R. M. Leblanc (1991) J. Fluoresc. 1, 225–234.

    Google Scholar 

  22. D. Fr{ie355-6}ckowiak, I. Gruda, M. Niedbalska, M. Romanowski, and A. Dudkowiak (1990) J. Photochem. Photobiol. A Chem. 54, 37–48.

    Google Scholar 

  23. R. van Grondelle, J. P. Dekker, T. Grillbro, and V. Sundstrom (1994) Biochim. Biophys. Acta 1187, 1–65.

    Google Scholar 

  24. D. Fr{ie355-7}ckowiak, A. Dudkowiak, R. Cegielski, A. Planner, and C. Schulz (1995) Photosynthetica 31, 283–299.

    Google Scholar 

  25. A. Rosencwaig (1980) Photoacoustics and Photoacoustics Spectroscopy, J. Wiley Interscience, New York.

    Google Scholar 

  26. H. Van Amerongen, S. L. S. Kwa, B. M. van Bolhuis, and R. van Grondelle (1994) Biophys. J. 67, 837–847.

    Google Scholar 

  27. J. Deisenhoffer, O. Epp, K. Miki, R. Huber, and H. Michel (1985) Nature 318, 618–624.

    Google Scholar 

  28. S. Karrasch, P. A. Bullough, and R. Ghosh (1995) EMBO J. 14, 631–638.

    Google Scholar 

  29. S. Karrash, P. A. Bullough, and R. Gosh (1995) in P. Mathis (Ed.), Photosynthesis from Light to Biosphere, Kluwer Academic Dodrecht, Boston, London, p. 81.

    Google Scholar 

  30. H. J. M. Kramer, R. van Grondelle, C. N. Hunter, and W. H. J. Westerhuis (1984) Biochim. Biophys. Acta 765, 156–165.

    Google Scholar 

  31. H. van Amerongen, B. van Haeringen, M. van Gurp, and R. van Grondelle (1991) Biophys. J. 59, 992–1001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Frackowiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goc, J., Planner, A., Frackowiak, D. et al. The Paths of Excitation Energy Deactivation in LH1 Reduced Mutant and Wild-Type Strains of Rhodobacter sphaeroides . Journal of Fluorescence 9, 347–355 (1999). https://doi.org/10.1023/A:1020544226075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020544226075

Navigation