Skip to main content
Log in

New Reaction Engineering Concepts for Selective Oxidation Reactions

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In order to enhance product yields in selective oxidation reactions, numerous reaction engineering concepts are being studied worldwide. Periodic operation has been investigated for decades, yet its application is limited to a few examples, such as the butane oxidation after DuPont or reverse-flow reactors for VOC removal. The use of microchannel reactors is a younger field, but it has already yielded promising results for process optimization. Catalytic wall reactors have proved to be a helpful tool for kinetic studies. On the laboratory scale, membrane reactors have displayed favorable behavior in selective oxidation. The Na vapor-catalyzed dehydrogenation of methanol to formaldehyde is a final example of an unusual new concept for selective oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.L. Silveston, Composition Modulation of Catalytic Reactors (Gordon and Breach, Amsterdam, 1998).

    Google Scholar 

  2. P. Silveston, R.R. Hudgins and A. Renken, Catal. Today 25 (1995) 91.

    Google Scholar 

  3. D.A. Lomas and D.A. Wegerer, US patent 5,346,613 to UOP, 1994.

  4. M.A. den Hollander, M. Makkee and J.A. Moulijn, Ind. Eng. Chem. Res. 40 (2001) 1602.

    Google Scholar 

  5. W.K. Lewis, E.R. Gilliland and W.A. Reed, Ind. Eng. Chem. 41 (1949) 1227.

    Google Scholar 

  6. J.L. Callahan, R.K. Grasselli, E.C. Milberger and H.A. Strecker, Ind. Eng. Chem. Prod. Res. Develop.9 (1970) 134.

    Google Scholar 

  7. M.C. Sze and A.P. Gelbein, Hydrocarbon Process.55 (1976) 103.

    Google Scholar 

  8. R.M. Contractor, H.E. Bergna, H.S. Horowitz, C.M. Blackstone, B. Malone, C.C. Torardi, B. Griffith, U. Chowdhry and A.W. Sleight, Catal. Today 1 (1987) 49.

    Google Scholar 

  9. G. Emig, K. Uihlein and C.-J. Häcker, in: Studies in Surface Science and Catalysis, Vol. 82: New Developments in Selective Oxidation II, eds.V. Cortés Corberαn and S. Vic. Bellón (Elsevier, Amsterdam, 1994) p.243.

    Google Scholar 

  10. M. Qian, St. Hess and M.A. Liauw, 75th International Bunsen Discussion Meeting, Analysis and Modelling of Heterogeneou Catalytic Processes, Berlin,12 -14 March 2001.

  11. R.L. Puurunen, B.G. Beheydt and B.M. Weckhuysen, J. Catal. 204 (2001) 253.

    Google Scholar 

  12. St. Weiß, St. Hess, M.A. Liauw and G. Emig, Proc.WCOC, Potsdam,16 -21 September 2001 Vol. II, p.411.

    Google Scholar 

  13. J.-X. Zhu, Can. J. Chem. Eng. 73 (1995) 662.

    Google Scholar 

  14. T. Grassler and K.-E. Wirth, in: Circulating Fluidized grate-Bed Technology VI, ed. J. Werther (Dechema, Frankfurt, 1999) p.65.

    Google Scholar 

  15. T. Grassler and K.-E. Wirth, Chem. Eng.J. 77 (2000) 65.

    Google Scholar 

  16. T. Grassler and K.-E. Wirth, Proc.2nd World Congress on Industrial Process Tomography, Hanover, 29-31 August 2001, p. 40.

  17. F. Cottrell, US patent 2,121,733, June 21,1938.

  18. G.K. Boreskov, Yu.Sh. Matros, O.V. Kiselev and G.A. Bunimovich, Dokl. Akad. Nauk SSSR 237 (1977) 160.

    Google Scholar 

  19. Yu.Sh. Matros and G. Bunimovich, Catal. Rev. Sci. Eng. 38 (1996) 1.

    Google Scholar 

  20. D. Agar and W. Ruppel, Chem. Eng. Sci. 43 (1988) 2073.

    Google Scholar 

  21. H. Seiler and G. Emig, Chem. Ing. Techn. 70 (1998) 1397.

    Google Scholar 

  22. H. Seiler, Ph.D.thesis, Erlangen, 2001.

  23. D. Neumann and G. Veser, to be published.

  24. E.H. Stitt, S.D. Jackson, D.G. Shipley and F. King, Catal. Today 69 (2001) 217.

    Google Scholar 

  25. D. Hönicke and G. Wießmeier, in: Microsystem Technology for Chemical and Biological Microreactors, ed.W. Ehrfeld (VCH, Weinheim, 1996) p.93.

    Google Scholar 

  26. W. Ehrfeld, V. Hessel and H. Löwe, Microreactors (VCH, Weinheim, 2000).

    Google Scholar 

  27. M.A. Liauw, M. Baerns, R. Broucek, O.V. Buyevskaya, J.-M. Commenge, J.-P. Corriou, L. Falk, K. Gebauer, H.J. Hefter, O.-U. Langer, H. Löwe, M. Matlosz, A. Renken, A. Rouge, R. Schenk, N. Steinfeldt and St. Walter, Proc. IMRET-3, Frankfurt, 18 -21 April 1999 (Springer, Berlin, 2000) p.224

    Google Scholar 

  28. A. Rouge, B. Spötzl, K. Gebauer, R. Schenk and A. Renken, Chem. Eng. Sci. 56 (2001) 1419.

    Google Scholar 

  29. M.T. Janicke, H. Kestenbaum, U. Hagendorf, F. Schüth, M. Fichtner and K. Schubert, J. Catal. 191 (2000) 282.

    Google Scholar 

  30. G. Veser, Chem. Eng. Sci. 56 (2001) 1265.

    Google Scholar 

  31. A.J. Franz, S.K. Ajmera, S.L. Firebaugh, K.F. Jensen and M.A. Schmidt in: Microreaction Technology: Industrial Prospects, ed. W. Ehrfeld (Springer, Berlin,2000) p.197.

    Google Scholar 

  32. V. Haverkamp, G. Emig, V. Hessel, M.A. Liauw and H. Löwe, Proceedings of IMRET-5 (Springer, Berlin, Heidelberg, New York, 2002) p.202.

    Google Scholar 

  33. O. Wörz, K.-P. Jäckel, Th. Richter and A. Wolf, Chem.Eng.Sci. 56 (2001) 1029.

    Google Scholar 

  34. A. Rouge and A. Renken, Proceedings of IMRET-5 (Springer, Berlin, Heidelberg, New York, 2002) p.59.

    Google Scholar 

  35. J. Brandner, M. Fichtner, K. Schubert, M.A. Liauw and G. Emig, Proceedings of IMRET-5 (Springer, Berlin, Heidelberg, New York, 2002) p.164.

    Google Scholar 

  36. A. Kapoor, S.K. Goyal and N.N. Bakhshi, Can. J. Chem. Eng. 64 (1986) 792.

    Google Scholar 

  37. K. Murata, K. Yamamoto and H. Kameyama, Int. J. Hydrogen Energy 21 (1996) 201.

    Google Scholar 

  38. K. Chandrasekharan and P.H. Calderbank, Chem. Eng. Sci. 35 (1980) 1523.

    Google Scholar 

  39. F. Endter, Chem. Ing. Tech. 30 (1958) 305.

    Google Scholar 

  40. B. Amon, H. Redlingshöfer, E. Klemm, E. Dieterich and G. Emig, Chem. Eng. Proc. 38 (1999) 395.

    Google Scholar 

  41. E. Klemm, B. Amon, H. Redlingshöfer, E. Dieterich and G. Emig, Chem. Eng. Sci. 56 (2001) 1347.

    Google Scholar 

  42. H. Redlingshöfer, Ph.D.thesis, University of Erlangen, 2002.

  43. T.T. Tsotsis, A.M. Champagnie, R.G. Minet and P.K.T. Liu, in: Computer-Aided Design of Catalysts,Chemical Industries, eds. E.R. Becker and C.J. Pereira,Vol.51 (Marcel Dekker, New York, 1993) Chap. 12.

    Google Scholar 

  44. R. Dittmeyer, V. Höllein and K. Daub, J. Mol. Catal A 173 (2001) 135.

    Google Scholar 

  45. J. Coronas and J. Santamaria, Catal. Today 51 (1999) 377.

    Google Scholar 

  46. R. Ramos, M. Menendez and J. Santamaria, Catal. Today 56 (2000) 239.

    Google Scholar 

  47. R. Prasad, CeramicMembranes for Syngas Production, Eurogas' 99 Conference, Ruhr-Universität Bochum, 25-27 May 1999.

  48. P.V. Hendriksen, P.H. Larsen, M. Mogensen, F.W. Poulsen and K. Wiik, Catal. Today 56 (2000) 283.

    Google Scholar 

  49. J.T. Ritchie, J.T. Richardson and D. Luss, AIChE J. 47 (2001) 2092.

    Google Scholar 

  50. D.J. Wilhelm, D.R. Simbeck, A.D. Karp and R.L. Dickenson, Fuel. Proc. Technol. 71 (2001) 139.

    Google Scholar 

  51. Y. Lu, A.G. Dixon, W.R. Moser, Y.H. Ma and U. Balachandran, Catal. Today 56 (2000) 297.

    Google Scholar 

  52. S. Ruf and G. Emig, Appl. Catal. A 161 (1997) L19.

    Google Scholar 

  53. S. Ruf and G. Emig, J. Mol. Catal. A: Chem. 146 (1999) 271.

    Google Scholar 

  54. ]S. Ruf, A. May and G. Emig, Appl. Catal. A 213 (2001) 203.

    Google Scholar 

  55. H. Redlingshöfer, O. Kröcher, W. Bock, K. Kuthmacher and G. Emig, Ind. Eng. Chem. Res. 41 (2002) 1445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emig, G., Liauw, M. New Reaction Engineering Concepts for Selective Oxidation Reactions. Topics in Catalysis 21, 11–24 (2002). https://doi.org/10.1023/A:1020543729259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020543729259

Navigation