Skip to main content
Log in

Genetic Evidence for Coenzyme Q Requirement in Plasma Membrane Electron Transport

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Plasma membranes isolated from wild-type Saccharomyces cerevisiae crude membrane fractions catalyzed NADH oxidation using a variety of electron acceptors, such as ferricyanide, cytochrome c, and ascorbate free radical. Plasma membranes from the deletion mutant strain coq3Δ, defective in coenzyme Q (ubiquinone) biosynthesis, were completely devoid of coenzyme Q6 and contained greatly diminished levels of NADH–ascorbate free radical reductase activity (about 10% of wild-type yeasts). In contrast, the lack of coenzyme Q6 in these membranes resulted in only a partial inhibition of either the ferricyanide or cytochrome-c reductase. Coenzyme Q dependence of ferricyanide and cytochrome-c reductases was based mainly on superoxide generation by one-electron reduction of quinones to semiquinones. Ascorbate free radical reductase was unique because it was highly dependent on coenzyme Q and did not involve superoxide since it was not affected by superoxide dismutase (SOD). Both coenzyme Q6 and NADH–ascorbate free radical reductase were rescued in plasma membranes derived from a strain obtained by transformation of the coq3Δ strain with a single-copy plasmid bearing the wild type COQ3 gene and in plasma membranes isolated form the coq3Δ strain grown in the presence of coenzyme Q6. The enzyme activity was inhibited by the quinone antagonists chloroquine and dicumarol, and after membrane solubilization with the nondenaturing detergent Zwittergent 3–14. The various inhibitors used did not affect residual ascorbate free radical reductase of the coq3Δ strain. Ascorbate free radical reductase was not altered significantly in mutants atp2Δ and cor1Δ which are also respiration-deficient but not defective in ubiquinone biosynthesis, demonstrating that the lack of ascorbate free radical reductase in coq3Δ mutants is related solely to the inability to synthesize ubiquinone and not to the respiratory-defective phenotype. For the first time, our results provide genetic evidence for the participation of ubiquinone in NADH–ascorbate free radical reductase, as a source of electrons for transmembrane ascorbate stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Asard, H., Caubergs, R., Renders, D., and De Greef, J. A. (1987). Plant Sci. 53, 109-119.

    Google Scholar 

  • Clarke, C. F., Williams, W., and Teruya, J. H. (1991). J. Biol. Chem. 266, 16636-16644.

    Google Scholar 

  • Do, T. Q., Schultz, J. R., and Clarke, C. F. (1996). Proc. Natl. Acad. Sci. U. S. 93, 7534-7539.

    Google Scholar 

  • Forsmark-Andrée P., Dallner, G., and Ernster, L. (1995). Free Rad. Biol. Med. 19, 749-757.

    Google Scholar 

  • Gómez-Díaz, C., Rodríguez-Aguilera, J. C., Barroso, M. P., Villalba, J. M., Navarro, F., Crane, F. L., and Navas, P. (1997a). J. Bioenerg. Biomembr. 29, 253-259.

    Google Scholar 

  • Gómez-Díaz, C., Villalba, J. M., Pérez-Vicente, R., Crane, F. L., and Navas, P. (1997b). Biochem. Biophys. Res. Commun. 234, 79-81.

    Google Scholar 

  • Kagan, V. E., Nohl, H., and Quinn, P. J. (1996). In Handbook of Antioxidants (Cadenas, E., and Packer, L., eds.), Marcel Dekker, New York, pp. 157-201.

    Google Scholar 

  • Kaplan, J., and O'Halloran, T. V. (1996). Science 271, 1510-1512.

    Google Scholar 

  • Kim, C., Crane, F. L., Becker, G. W., and Morré, D. J. (1995). Protoplasma 184, 111-117.

    Google Scholar 

  • Larm, J. A., Vaillant, F., Linnane, A. W., and Lawen, A. (1994). J. Biol. Chem. 296, 30097-30100.

    Google Scholar 

  • Lesuisse, E., and Labbe, P. (1992). Plant Physiol. 100, 769-777.

    Google Scholar 

  • Lesuisse, E., Casteras-Simon, M., and Labbe, P. (1996). J. Biol. Chem. 271, 13578-13583.

    Google Scholar 

  • Littarru, G. P., Battino, M., and Folkers, K. (1996). In Handbook of Antioxidants (Cadenas, E., and Packer, L., eds.), Marcel Dekker, New York, pp. 203-239.

    Google Scholar 

  • Marbois, B. N., Hsu, A., Pillai, R., Colicelli, J., and Clarke, C. F. (1994). Gene 138, 213-217.

    Google Scholar 

  • Nakamura, M., and Hayashi, T. (1994). J. Biochem. 115, 1141-1147.

    Google Scholar 

  • Navarro, F., Villalba, J. M., Crane, F. L., Mackellar, W. C., and Navas, P. (1995). Biochem. Biophys. Res. Commun. 212, 138-143.

    Google Scholar 

  • Navas, P., Estévez, A., Burón, M. I., Villalba, J. M., and Crane, F. L. (1988). Biochem. Biophys. Res. Commun. 154, 1029-1033.

    Google Scholar 

  • Navas, P., Villalba, J. M., and Córdoba, F. (1994). Biochim. Biophys. Acta 1197, 1-13.

    Google Scholar 

  • Preusch, P. C., Siegel, D., Gibson, N. W., and Ross, D. (1991). Free Rad. Biol. Med. 11, 77-80.

    Google Scholar 

  • Repetto, B., and Tzagoloff, A. (1989). Mol. Cell. Biol. 9, 2695-2705.

    Google Scholar 

  • Rodríguez-Aguilera, J. C., and Navas, P. (1994). J. Bioenerg. Biomembr. 26, 379-384.

    Google Scholar 

  • Santos-Ocaña, C., Navas, P., Crane, F. L., and Córdoba, F. (1995). J. Bioenerg. Biomembr. 27, 597-603.

    Google Scholar 

  • Santos-Ocaña, C., Córdoba, F., Crane, F. L., Clarke, C. F., and Navas, P. (1998). J. Biol. Chem. 273, 8099-8105.

    Google Scholar 

  • Schweinzer, E., and Goldenberg, H. (1993). Eur. J. Biochem. 218, 1057-1062.

    Google Scholar 

  • Serrano, R. (1988). Methods Enzymol. 157, 533-544.

    Google Scholar 

  • Serrano, R., Montesinos, C., Roldán, M., Garrido, G., Ferguson, C., Leonard, K., Monk, B. C., Perlin, D. S., and Weiler, E. W. (1991). Biochim. Biophys. Acta 1062, 157-164.

    Google Scholar 

  • Shirabe, K., Yubisui, T., Nishino, T., and Takeshita, M. (1991). J. Biol. Chem. 266, 7531-7536.

    Google Scholar 

  • Sikorski, R. S., and Hieter, P. (1989). Genetics 122, 19-27.

    Google Scholar 

  • Stearman, R., Yuan, D. S., Yamaguchi-Iwai, Y., Klausner, R. D., and Dancis, A. (1996). Science 271, 1552-1557.

    Google Scholar 

  • Steck, T. L., and Kant, J. A. (1974). Methods Enzymol. 31, 172-180.

    Google Scholar 

  • Stoscheck, C. M. (1990). Methods Enzymol. 182, 50-68.

    Google Scholar 

  • Storrie, B., and Madden, E. A. (1990). Methods Enzymol. 182, 203-225.

    Google Scholar 

  • Sun, I. L., Sun, E. E., Crane, F. L., Morré, D. J., Lindgren, A., and Löw, H. (1992). Proc. Natl. Acad. Sci. U.S. 89, 11126-11130.

    Google Scholar 

  • Tzagoloff, A., and Dieckmann, C. L. (1990). Microbiol. Rev. 54, 211-225.

    Google Scholar 

  • Tzagoloff, A., Akai, A., and Needleman, R. B. (1975a). J. Biol. Chem. 250, 8228-8235.

    Google Scholar 

  • Tzagoloff, A., Akai, A., and Needleman, R. B. (1975b). J. Bacteriol. 122, 826-831.

    Google Scholar 

  • Tzagoloff, A., Wu, M., and Crivellone, M. (1986). J. Biol. Chem. 261, 17163-17169.

    Google Scholar 

  • Umizawa, C., and Kishi, T. (1989). In The Yeasts (Rose, A. H., and Harrison, J. S., eds.), Vol 3, Academic Press, London, pp. 457-488.

    Google Scholar 

  • Villalba, J. M., Canalejo, A., Rodríguez-Aguilera, J. C., Burón, M. I., Morré, D. J., and Navas, P. (1993a). J. Bioenerg. Biomembr. 25, 411-417.

    Google Scholar 

  • Villalba, J. M., Canalejo, A., Burón, M. I., Córdoba, F., and Navas, P. (1993b). Biochem. Biophys. Res. Commun. 192, 707-713.

    Google Scholar 

  • Villalba, J. M., Navarro, F., Córdoba, F., Serrano, A., Arroyo, A., Crane, F. L., and Navas, P. (1995). Proc. Natl. Acad. Sci. U.S. 92, 4887-4891.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos–Ocaña, C., Villalba, J.M., Córdoba, F. et al. Genetic Evidence for Coenzyme Q Requirement in Plasma Membrane Electron Transport. J Bioenerg Biomembr 30, 465–475 (1998). https://doi.org/10.1023/A:1020542230308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020542230308

Navigation