Skip to main content
Log in

Magnetic Moment Measurement of Short Lived States via the Doppler Shift Transient Field Method

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Magnetic moment measurements of picosecond states generally make use of the huge transient magnetic fields which fast nuclei experience during their passage through a ferromagnetic foil. Based on the Recoil Distance Transient Field (RDTF) method previously pioneered by the Göttingen group, we propose the Doppler Shift Transient Field (DSTF) method to measure g-factors of short-lived high-spin states excited in a heavy ion fusion reaction at a high recoil velocity. This method can be used whenever the state is populated by fast discrete feeder transitions γ2. By measuring the Larmor precession of the decay γ-ray γ1 with a gate set on the Doppler shifted tail of γ2, one selects events of high recoil velocity (= high transient field) and avoids, to a large extent, the uncertainties of delayed side and cascade feedings inherent in heavy-ion fusion reactions. Estimates are given for the DSTF precessions in 102Cd and 74Br.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bodenstedt, E., In: W. D. Hamilton (ed.) The Electromagnetic Interaction in Nuclear Spectroscopy, North-Holland, Amsterdam, 1975, p. 737.

    Google Scholar 

  2. Sprouse, G. D., In: Hyperfine Interactions in Excited Nuclei, Gordon and Breach, New York, London, Paris, 1971, p. 931.

    Google Scholar 

  3. Stuchberry, A. E., Anderssen, S. S. and Bezakova, E., Hyp. Interact. 97/98 (1996), 479.

    Article  Google Scholar 

  4. Jungclaus, A., Hyp. Interact. 120/121 (1999), 107.

    Article  Google Scholar 

  5. Lieb, K. P., In: D. N. Poenaru and W. Greiner (eds), Experimental Techniques in Nuclear Physics, de Gruyter, Berlin, New York, 1997, p. 425.

    Google Scholar 

  6. Dewald, A., Harrisopulos, S. and von Brentano, P., Z. Phys. A 334 (1989), 163; Petkov, P. et al., Nucl. Instr. Meth. A 431 (1999), 208.

    Google Scholar 

  7. Brandolini, F. and Ribas, R. V., Nucl. Instr. Meth. A 417 (1998), 150.

    Article  Google Scholar 

  8. Böhm, G. et al., Nucl. Instr. Meth. A 329 (1993), 248; Petkov, P. et al., Nucl. Instr. Meth. A 437 (1999), 274.

    Article  Google Scholar 

  9. Jungclaus, A. et al., Phys. Rev. Lett. 80 (1998), 2793.

    Article  ADS  Google Scholar 

  10. Teich, C., Jungclaus, A. and Lieb, K. P., Nucl. Instr. Meth. A 418 (1998), 365.

    Article  ADS  Google Scholar 

  11. Teich, C. et al., Phys. Rev. C 59 (1999), 1943.

    Article  ADS  Google Scholar 

  12. Alber, D. et al., Z. Phys. A 344 (1992), 1.

    Article  Google Scholar 

  13. Persson, J. et al., Nucl. Phys. A 627 (1997), 101.

    Article  ADS  Google Scholar 

  14. Kownacki, J. et al., Nucl. Phys. A 627 (1997), 239.

    Article  ADS  Google Scholar 

  15. Lieb, K. P. et al., Phys. Rev. C 63 (2001), 054304.

    Article  ADS  Google Scholar 

  16. Müller, G. A. et al., Phys. Rev. C 64 (2001), 014305.

    Article  ADS  Google Scholar 

  17. Johnstone, I. P., private communication.

  18. Biersack, J. P. and Ziegler, J. F., program TRIM95, unpublished.

  19. Programs LINESHAPE and DECHIST, Wells, J. C. et al., ORNL Physics Division Progress Report 30, 1991, Nr. ORNL-66B9.

  20. Speidel, K. H., private communication.

  21. Jacob, G. et al., Z. Phys. D 32 (1994), 7.

    Article  Google Scholar 

  22. Loritz, R. et al., Eur. Phys. J. A 6 (1999), 257.

    Article  ADS  Google Scholar 

  23. Lieb, K. P., Progr. Part. Nucl. Phys. 46 (2001), 205.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieb, KP., Galindo-Leon, E. & Dhar, S. Magnetic Moment Measurement of Short Lived States via the Doppler Shift Transient Field Method. Hyperfine Interactions 136, 215–223 (2001). https://doi.org/10.1023/A:1020536400474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020536400474

Navigation