Skip to main content
Log in

High-Order Autocorrelation with Imaging Fluorescence Correlation Spectroscopy: Application to IgE on Supported Planar Membranes

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The use of high-order autocorrelation with imaging fluorescence correlation spectroscopy is described. Fluorescently labeled, antitrinitrophenyl IgE antibodies were specifically bound to substrate-supported planar membranes composed of trinitrophenylaminocaproyldipalmitoylphosphatidylethanolamine and dipalmitoylphosphatidylcholine. The IgE-coated membranes were illuminated with a laser beam that was totally internally reflected at the substrate/solution interface. The evanescently excited fluorescence arising from the membrane-bound IgE was measured with a CCD camera. The images were corrected for background and for the elliptically Gaussian spatial dependence of the evanescent excitation intensity. A series of high-order pixel-to-pixel spatial fluorescence fluctuation autocorrelation functions was calculated from the images. The autocorrelation functions generated multiple independent parameters which were used to characterize the nonuniform spatial distributions of the membrane-bound IgE. These parameters varied with the IgE density and also changed significantly when the IgE-coated membranes were further treated with unlabeled, polyclonal anti-IgE. The high-order autocorrelation functions calculated from images of planar membranes containing fluorescently labeled lipids rather than bound, labeled IgE demonstrated that the spatial nonuniformities were prominent only in the presence of IgE. Images of fluorescent beads were used to demonstrate the principles and the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Matko and M. Edidin (1997) Methods Enzymol. 278, 444–462.

    Google Scholar 

  2. K. Kwiatkowska and A. Sobota (1999) Bioessays 21, 422–431.

    Google Scholar 

  3. W. J. Fantl, D. E. Johnson, and L. T. Williams (1993) Annu. Rev. Biochem. 62, 453–481.

    Google Scholar 

  4. C. H. Heldin (1995) Cell 80, 213–223.

    Google Scholar 

  5. S. C. Froehner (1993) Annu. Rev. Neurosci. 16, 347–368.

    Google Scholar 

  6. B. J. Bormann and D. M. Engelman (1992) Annu. Rev. Biophys. Biomol. Struct. 21, 223–242.

    Google Scholar 

  7. M. Zhou, S. Felder, M. Rubinstein, D. R. Hurwitz, A. Ullrich, I. Lax, and J. Schlessinger (1993) Biochemistry 32, 8193–8198.

    Google Scholar 

  8. B. C. Cunningham, M. Ultsch, A. M. de Vos, M. G. Mulkerrin, K. R. Caluser, and J. A. Wells (1991) Science 254, 821–825.

    Google Scholar 

  9. H. S. Earp, T. L. Dawson, X. Li, and H. Yu (1995) Breast Cancer Res. Treat. 35, 115–132.

    Google Scholar 

  10. J. M. Sherrill and J. Kyte (1996) Biochemistry 35, 5705–5718.

    Google Scholar 

  11. M. W. Pantoliano, R. A. Horlick, B. A. Springer, D. E. Van Dyk, T. Tobery, D. R. Wetmore, J. D. Lear, A. T. Nahapetian, J. D. Bradley, and W. P. Sick (1994) Biochemistry 33, 10229–10248.

    Google Scholar 

  12. T. Spivak-Kroizman, M. A. Lemmon, I. Dikic, J. E. Ladbury, D. Pinchasi, J. Huang, M. Jaye, G. Crumley, J. Schlessinger, and I. Lax (1994) Cell 79, 1015–1024.

    Google Scholar 

  13. T. Horan, J. Wen, L. Nahri, V. Parker, A. Garcia, T. Arakawa, and I. Philo (1996) Biochemistry 35, 4886–4896

    Google Scholar 

  14. A. Sette, J. Alexander, J. Ruppert, K. Snoke, A. Franco, G. Ishioka, and H. M. Grey (1994) Annu. Rev. Immunol. 12, 413–431.

    Google Scholar 

  15. I. Tamir, R. Schweitzer-Stenner, and I. Pecht (1996) Biochemistry 35, 6872–6883.

    Google Scholar 

  16. O. H. Choi, J. H. Kim, and J. P. Kinet (1996) Nature 380, 634–636.

    Google Scholar 

  17. S. Miyamoto, S. K. Akiyama, and K. M. Yamada (1995) Science 267, 883–885.

    Google Scholar 

  18. K. Yamada, E. Goncalves, J. L. Carpenter, C. R. Kahn, and S. E. Shoelson (1995) Biochemistry 34, 946–954.

    Google Scholar 

  19. M. Murakami, M. Hibi, N. Nakagawa, T. Nagakawa. K. Yasukawa, K. Yamanishi, T. Taga, and T. Kishimoto (1993) Science 260, 1808–1810.

    Google Scholar 

  20. J. S. Philo, K. H. Aoki, T. Arakawa, L. O. Narhi, and J. Wen (1996) Biochemistry 35, 1681–1691

    Google Scholar 

  21. N. L. Thompson (1991) in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy (Plenum Press, New York), Vol. 1, Chap. 6.

    Google Scholar 

  22. A. G. Palmer and N. L. Thompson (1989) Proc. Natl. Acad. Sci. USA 86, 6148–6152.

    Google Scholar 

  23. A. G. Palmer and N. L. Thompson (1989) Chem. Phys. Lipids 50, 253–270.

    Google Scholar 

  24. N. O. Petersen, D. C. Johnson, and M. J. Schlesinger (1986) Biophys. J. 49, 817–820.

    Google Scholar 

  25. N. O. Petersen (1986) Biophys. J. 49, 809–815.

    Google Scholar 

  26. T. Meyer and H. Schindler (1988) Biophys. J. 54, 983–993.

    Google Scholar 

  27. P. R. St-Pierre and N. O. Petersen (1990) Biophys. J. 58, 503–511.

    Google Scholar 

  28. P. R. St-Pierre and N. O. Petersen (1992) Biochemistry 31, 2459–2463.

    Google Scholar 

  29. D. E. Koppel, F. Morgan, A. E. Cowan and J. H. Carson (1994) Biophys. J. 66, 502–507.

    Google Scholar 

  30. K. M. Berland, P. T. C. So, and E. Gratton (1995) Biophys. J. 68, 694–701.

    Google Scholar 

  31. K. M. Berland, P. T. So, Y. Chen, W. W. Mantulin, and E. Gratton (1996) Biophys. J. 71, 410–420.

    Google Scholar 

  32. N. O. Petersen, P. L. Hoddelius, P. W. Wiseman, O. Seger, and K.-E. Magnusson (1993) Biophys. J. 65, 1135–1146.

    Google Scholar 

  33. M. D. Wang and D. Axelrod (1994) Bioimaging 2, 22–35.

    Google Scholar 

  34. Z. Huang and N. L. Thompson (1996) Biophys. J. 70, 2001–2007.

    Google Scholar 

  35. E. Fire, C. M. Brown, M. G. Roth, Y. I. Henis, and N. O. Petersen (1997) J. Biol. Chem. 272, 29538–29545.

    Google Scholar 

  36. B. J. Rasmusson, T. D. Flanagan, S. J. Turco, R. M. Epand, and N. O. Petersen (1998) Biochim. Biophys. Acta Mol. Cell. Res. 1404, 338–352.

    Google Scholar 

  37. C. M. Brown and N. O. Petersen (1998) J. Cell Sci. 111, 271–281.

    Google Scholar 

  38. P. W. Wiseman and N. O. Petersen (1999) Biophys. J. 76, 963–977.

    Google Scholar 

  39. U. Meseth, T. Wohland, R. Rigler, and H. Vogel (1999) Biophys. J. 76, 1619–1631.

    Google Scholar 

  40. A. G. Palmer and N. L. Thompson (1987) Biophys. J. 52, 257–270.

    Google Scholar 

  41. A. G. Palmer and N. L. Thompson (1989) Rev. Sci. Instrum. 60, 624–633.

    Google Scholar 

  42. A. G. Palmer and N. L. Thompson (1989) Appl. Opt. 28, 1214–1220.

    Google Scholar 

  43. H. Qian and E. L. Elson (1990) Proc. Natl. Acad. Sci. USA 87, 5479–5483.

    Google Scholar 

  44. H. Qian and E. L. Elson (1990) Biophys. J. 57, 375–380.

    Google Scholar 

  45. M. L. Pisarchick and N. L. Thompson (1990) Biophys. J. 58, 1235–1249.

    Google Scholar 

  46. M. M. Timbs and N. L. Thompson (1990) Biophys. J. 58, 413–428.

    Google Scholar 

  47. K. H. Pearce, R. G. Hiskey, and N. L. Thompson (1992) Biochemistry 31, 5983–5995.

    Google Scholar 

  48. H. V. Hsieh, C. L. Poglitsh, and N. L. Thompson (1992) Biochemistry 31, 11562–11566.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broek, W.V., Huang, Z. & Thompson, N.L. High-Order Autocorrelation with Imaging Fluorescence Correlation Spectroscopy: Application to IgE on Supported Planar Membranes. Journal of Fluorescence 9, 313–324 (1999). https://doi.org/10.1023/A:1020536024258

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020536024258

Navigation