Abstract
We report here an unexpected difference in the solubilities of D- and L-tyrosine in water, which could be discerned by their rate of crystallization and the resulting concentrations of their saturated solutions. A supersaturated solution of 10 mM L-tyrosine at 20 °C crystallized much more slowly than that of D-tyrosine under the same conditions, and the saturated solution of L-tyrosine was more concentrated than that of D-tyrosine. Supersaturated solutions of 10 mM DL-tyrosine in water formed precipitates of predominantly D-tyrosine and DL-tyrosine, resulting in an excess of L-tyrosine in the saturated solution. The experimental setups were monitored independently by UV-absorption, radioactivity tracing, optical rotation and X-ray diffraction. The process of nucleation and crystallization of D- and L-tyrosine is characterized by an exceptionally high cooperativity. It is possible that minute energy differences between D- and L-tyrosine, originating from parity violation or other non-conservative chiral discriminatory rules, could account for the observations. The physical process that initiated chiral selection in biological systems remains a challenging problem in understanding the origin of life, and it is possible that chiral compounds were concentrated from supersaturated racemic mixtures by preferential crystallization.
This is a preview of subscription content,
to check access.References
Atik, Z., Ewing, M. B. and McGlashan, M. L.: 1981, 'Chiral discrimination in liquids. Excess molar volume of (1-X)A+ +XA?, where A denotes limonene, fenchone and a-methylbenzylamine', J. Phys. Chem. 85, 3300-3303.
Bonner, W. A.: 1991, 'The origin and amplification of biomolecular chirality', Orig. Life Evol. Biosphere 21, 59-111.
Bonner, W. A., Greenberg, J. M. and Rubinstein, E.: 1999, 'The extraterrestrial origin of the homochirality of bio-molecules; Rebute to a critique', Orig. Life Evol. Biosph. 29, 215-219.
Buhse, T., Durand, D., Kondepundi, D., Laudadio, J. and Spliker, S.: 2000, Chiral symmetry breaking in crystallization: The role of convection. Phys. Rev. Letters 84, 4405-4408.
Cronin, J. R. and Pizzarello, S.: 1997, 'Enantiomeric excesses in meteoritic amino acids', Science 275, 951-955.
Gillard, R. D. and da-Luz-de-Jesus, J. D. P.: 1979, 'Studies on the origin of asymmetry. I. Optically active crystals as selective adsorbents', J. Chem. Soc. Dalton Trans. 11, 1779-1782.
Greenstein, P. J. and Winitz, M.: 1961, Chemistry of the Amino Acids 3, Wiley, New York, pp. 2364–2365.
Hazen, R. N., Filley, T. R. and Goodfriend, G. A.: 2001, 'Selective adsorption of L-and D-amino acids on calcite: Implications for biochemical homochirality', Proc. Natl. Acad. Sci. USA 98, 5487-5490.
Hegstrom, R. A., Rein, D. W. and Sandars, P. G. H.: 1980, 'Calculation of the parity nonconserving energy difference between mirror-image molecules', J. Chem. Phys. 73, 2329-2341.
Khawas, B.: 1986, 'Crystal data for D-methionine and D-tyrosine'. J. Appl. Cryst. 19, 410.
Klabunovskii, E. I. and Thiemann, W.: 2000, 'The role of quartz in the origin of optical activity on Earth', Orig. Life Evol. Biosph. 30, 431-434.
Kondepudi, D. K., Kaufman, R. J. and Singh, N.: 1990, 'Crystal symmetry breaking in sodium chlorate crystalization', Science 250, 975-976.
Kondepudi, D. K. and Nelson, G. W.: 1985, 'Weak neutral currents and the origin of biomolecular chirality', Nature 314, 438-441.
Mason, S. F. and Tranter: 1984, 'The parity violating energy differences between enantiomeric molecules', Mol. Phys. 53, 1091-1111.
Morowitz, H. J.: 1969, 'A mechanism for the amplification of fluctuations in racemic mixtures', J. Theoret. Biol. 25, 491-494.
Mostad, A., Nessen, H. M. and Romming, C.: 1972, 'Crystal structure of L-tyrosine', Acta Chem. Scand. 26, 3819-3833.
Pasteur, L.: 1848, 'Memoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire', Compt. Rond Acad. Sci. Paris 26, 535-538.
Shinitzky, M.: 1989, 'Thoughts and Hints on Possible Violation of Parity in the Biological Matter', in D. M. Jameson and G. D. Reinhardt (eds), Fluorescent Biomolecules, Plenum Pub. Co., pp. 133?138.
Shinitzky, M. and Haimovitz, R.: 1993, 'Chiral surfaces in micelles of N-palmitoyl or N-stearoyl L-(or D-) serine', J. Am. Chem. Soc. 115, 12545-12549.
Soai, K., Osanai, S., Kadowaki, K., Yonekubo, S., Shibata, T. and Sato, I.: 1999, 'd-and l-quartzpromoted highly enantioselective synthesis of a chiral compound', J. Am. Chem. Soc. 121, 11235-11236.
Szabo-Nagy, A. and Keszhelyi, L.: 1999, 'Determination of the parity violation energy difference between enantiomers', Proc. Natl. Acad. Sci. USA 96, 4252-4255.
Thiemann, W. and Darge, W.: 1974, 'Experimental attempts for the study of the origin of optical activity on earth', Orig. Life 5, 263-283.
Thiemann, W. and Wagener, K.: 1970, 'Is there energy difference between enantiomorphic structures?', Angew. Chem. Internat. Ed. 9, 740-741.
Wang, W., Yi, F., Ni, Y., Zhao, Z., Jin, Y. and Tang, Y.: 2000, 'Parity violation of electroweak force in phase transitions of single crystals of D-and L-alanine and valine', J. Biol. Phys. 26, 51-68.
Winnek, P. S. and Schmidt, C. L. A.: 1935, 'The solubilities, apparent dissociation constants and thermodynamic data of the dihalogenated tyrosine compounds', J. Gen. Physiol. 18, 889-903.
Winnek, P. S. and Schmidt, C. L. A.: 1936, 'The solubilities of the l-dihalogenated tyrosines in ethanol-water mixtures and certain related data', J. Gen. Physiol. 19, 773-780.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shinitzky, M., Nudelman, F., Barda, Y. et al. Unexpected Differences between D- and L- Tyrosine Lead to Chiral Enhancement in Racemic Mixtures Dedicated to the memory of Prof. Shneior Lifson – A great liberal thinker.. Orig Life Evol Biosph 32, 285–297 (2002). https://doi.org/10.1023/A:1020535415283
Issue Date:
DOI: https://doi.org/10.1023/A:1020535415283