Skip to main content
Log in

Unraveling the Kinetic Mechanism of the 70-kDa Molecular Chaperones Using Fluorescence Spectroscopic Methods

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This article reviews the recent progress in unraveling the kinetic mechanism of the 70-kDa molecular chaperones by the use of fluorescence spectroscopic methods. Dissecting the kinetics of the individual steps in the 70-kDa chaperone reaction cycle in vitro—ATP binding, peptide binding, interdomain coupling, and chaperone-catalyzed ATP hydrolysis—provides a foundation which can be used to develop a clear understanding of the molecular basis for chaperone activity in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Becker and E. A. Craig (1994) Eur. J. Biochem. 219, 11–23.

    Google Scholar 

  2. A. Bucherberger and B. Bukau (1997) in M.-J. Gething (Ed.), Guidebook to Molecular Chaperones and Protein-Folding Catalysts, Oxford University Press, Oxford.

    Google Scholar 

  3. W. J. Welch, D. K. Eggers, W. J. Hansen, and H. Nagata (1998) in A. L. Fink and U. Goto (Eds.), Molecular Chaperones in the Life Cycle of Proteins, Marcel Dekker, New York.

    Google Scholar 

  4. A. L. Fink and U. Goto (1998) in A. L. Fink and U. Goto (Eds.) Molecular Chaperones in the Life Cycle of Proteins, Marcel Dekker, New York.

    Google Scholar 

  5. B. Bukau and A. L. Horwich (1998) Cell 92, 351–366.

    Google Scholar 

  6. S. Lindquist and E. A. Craig (1988) Annu. Rev. Genet. 22, 631–677.

    Google Scholar 

  7. F. U. Hartl (1996) Nature 381, 571–580.

    Google Scholar 

  8. D. Skowyra, C. Georgopoulos, and M. Zylicz (1990) Cell 62, 939–944.

    Google Scholar 

  9. A. Ziemienowicz, D. Skowyra, J. Zeilstra-Ryalls, O. Fayet, C. Georgopoulos, and M. Zylicz (1993) J. Biol. Chem. 268, 25425–25431.

    Google Scholar 

  10. D. R. Palleros, K. L. Reid, L. Shi, W. J. Welch and A. L. Fink (1993) Nature 365, 664–666.

    Google Scholar 

  11. D. Schmid, A. Baici, H. Gehring, and P. Christen (1994) Science 263, 971–973.

    Google Scholar 

  12. A. Buchberger, H. Theyssen, H. Schroder, J. S. McCarty, G. Virgallita, P. Milkereit, J. Reinstein, and B. Bukau (1995) J. Biol. Chem. 270, 16903–16910.

    Google Scholar 

  13. K. L. Fung, L. Hilgenberg, N. M. Wang, and W. J. Chirico (1996) J. Biol. Chem. 271, 21559–21565.

    Google Scholar 

  14. G. C. Flynn, T. G. Chappell, and J. E. Rothman (1989) Science 245, 385–390.

    Google Scholar 

  15. S. Sadis and L. E. Hightower (1992) Biochemistry 31, 9406–9412.

    Google Scholar 

  16. S. Blond-Elguindi, A. M. Fourie, J. F. Sambrook, and M.-J. H. Gething (1993) J. Biol. Chem. 268, 12730–12735.

    Google Scholar 

  17. K. Park, G. C. Flynn, J. E. Rothman, and G. D. Fasman (1993) Prot. Sci. 2, 325–330.

    Google Scholar 

  18. K. M. Flaherty, C. DeLuca-Flaherty, and D. B. McKay (1990) Nature 346, 623–628.

    Google Scholar 

  19. K. M. Flaherty, D. B. McKay, W. Kabsch, and K. C. Holmes (1991) Proc. Natl. Acad. Sci. USA 88, 5041–5045.

    Google Scholar 

  20. K. M. Flaherty, S. M. Wilbanks, C. DeLuca-Flaherty, and D. B. McKay (1994) J. Biol. Chem. 269, 12899–12907.

    Google Scholar 

  21. J. C. A. Bardwell and E. A. Craig (1984) Proc. Natl. Acad. Sci. USA 81, 848–852.

    Google Scholar 

  22. X. Zhu, X. Zhao, W. F. Burkholder, A. Gragerov, C. M. Ogata, M. E. Gottesman, and W. A. Hendrickson (1996) Science 272, 1606–1614.

    Google Scholar 

  23. R. C. Morshauser, H. Wang, G. C. Glynn and R. P. Zuiderweg (1995) Biochemistry 34, 6261–6266.

    Google Scholar 

  24. H. Wang, A. V. Kurochkin, Y. Pang, W. Hu, G. C. Flynn, and E. R. P. Zuiderweg (1998) Biochemistry 37, 7929–7940.

    Google Scholar 

  25. S. J. Landry, R. Jordan, R. McMacken, and L. M. Gierasch (1992) Nature 355, 455–457.

    Google Scholar 

  26. D. R. Palleros, W. J. Welch, and A. L. Fin (1991) Proc. Natl. Acad. Sci. USA 88, 5719–5723.

    Google Scholar 

  27. D. R. Palleros, L. Shi, K. L. Reid, and A. L. Fink (1994) J. Biol. Chem. 269, 13107–13114.

    Google Scholar 

  28. G. C. Flynn, J. Pohl, M. T. Flocco, and J. E. Rothman (1991) Nature 353, 726–730.

    Google Scholar 

  29. S. Blond-Elguindi, S. E. Cwirla, W. J. Dower, R. J. Lipshutz, S. R. Sprang, J. F. Sambrook, and M.-J. H. Gething (1993) Cell 75, 717–728.

    Google Scholar 

  30. A. Gragerov, L. Zeng, X. Zhao, W. Burkholder and M. E. Gottesman (1994) J. Mol. Biol. 235, 848–854.

    Google Scholar 

  31. S. Rudiger, L. Germeroth, J. Schneider-Mergener, and B. Bukau (1997) EMBO J. 16, 1501–1507.

    Google Scholar 

  32. L. E. Greene, R. Zinner, S. Naficy, and E. Eisenberg (1995) J. Biol. Chem. 270, 2967–2973.

    Google Scholar 

  33. D. R. Palleros, K. L. Reid, J. S. McCarty, G. C. Walker, and A. L. Fink (1992) J. J. Biol. Chem. 267, 5279–5285.

    Google Scholar 

  34. B. Banecki, M. Zylicz, E. Bertoli, and F. Tanfani (1992) J. Biol. Chem. 267, 25051–25058.

    Google Scholar 

  35. S. M. Wilbanks, L. Chen, H. Tsuruta, K. O. Hodgson, and D. B. McKay (1995) Biochemistry 34, 12095–12106.

    Google Scholar 

  36. L. Shi, M. Kataoka, and A. L. Fink (1996) Biochemistry 35, 3297–3308.

    Google Scholar 

  37. R. Russell, R. Jordan, and R. McMacken (1998) Biochemistry 37, 596–607.

    Google Scholar 

  38. J.-H. Ha and D. B. McKay (1995) Biochemistry 34, 11635–11644.

    Google Scholar 

  39. B. Banecki and M. Zylicz (1996) J. Biol. Chem. 271, 6137–6143.

    Google Scholar 

  40. H. Theyssen, H.-P. Schuster, L. Packschies, B. Bukau, and J. Reinstein (1996) J. Mol. Biol. 263, 657–670.

    Google Scholar 

  41. S. V. Slepenkov and S. N. Witt (1998) Biochemistry 37, 1015–1024.

    Google Scholar 

  42. S. M. Gisler, E. V. Peirpaoli, and P. Christen (1998) J. Mol. Biol. 279(4), 833–840.

    Google Scholar 

  43. S. V. Slepenkov and S. N. Witt (1998) Biochemistry 37, 16749–16756.

    Google Scholar 

  44. C. D. Farr, F. J. Galiano, and S. N. Witt (1995) Biochemistry 34, 15574–15582.

    Google Scholar 

  45. S. Takeda and D. B. McKay (1996) Biochemistry 35, 4636–4644.

    Google Scholar 

  46. J. Zhang and G. C. Walker (1998) Arch. Biochem. Biophys. 356, 177–186.

    Google Scholar 

  47. E. V. Pierpaoli, S. M. Gisler, and P. Christen (1998) Biochemistry 37, 16741–16748.

    Google Scholar 

  48. D. R. Palleros, K. L. Reid, L. Shi, and A. L. Fink (1993) FEBS Lett. 336, 124–128.

    Google Scholar 

  49. C. D. Farr, S. V. Slepenkov, and S. N. Witt (1998) J. Biol. Chem. 273, 9744–9748.

    Google Scholar 

  50. D. M. Cyr, T. Langer, and M. G. Douglas (1994) Trends Biochem. Sci. 19, 176–181.

    Google Scholar 

  51. R. Jordan and R. McMacken (1995) J. Biol. Chem. 270, 4563–4569.

    Google Scholar 

  52. R. Russell, A. W. Karzai, A. F. Mehl, and R. McMacken (1999) Biochemistry 38, 4165–4176.

    Google Scholar 

  53. A. W. Karzai and R. McMacken (1996) J. Biol. Chem. 271, 11236–11246.

    Google Scholar 

  54. C. Alfano and R. McMacken (1989) J. Biol. Chem. 264, 10699–10708.

    Google Scholar 

  55. J. Gamer, H. Bujard, and B. Bukau (1992) Cell 69, 833–842.

    Google Scholar 

  56. A. Szabo, T. Langer, H. Schroder, J. Flanagan, B. Bukau, and F.-U. Hartl (1994) Proc. Natl. Acad. Sci. USA 91, 10345–10349.

    Google Scholar 

  57. K. Liberek, J. Marszalek, D. Ang, C. Georgopoulos, and M. Zylicz (1991) Proc. Natl. Acad. Sci. USA 88, 2874–2878.

    Google Scholar 

  58. C. J. Harrison, M. Hayer-Hartl, M. Di Liberto, F.-U. Hartl, and J. Kuriyan (1997) Science 276, 431–435.

    Google Scholar 

  59. L. Packschies, H. Theyssen, A. Bucherberger, B. Bukau, R. S. Goody, and J. Reinstein (1997) Biochemistry 36, 3417–3422.

    Google Scholar 

  60. E. V. Pierpaoli, E. Sanmeier, A. Baici, H.-J. Schönfeld, S. Gisler, and P. Christen (1997) J. Mol. Biol. 269, 757–768.

    Google Scholar 

  61. E. V. Pierpaoli, E. Sandmeier, H.-J. Schönfeld, and P. Christen (1998) J. Biol. Chem. 273, 6643–6649.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witt, S.N., Slepenkov, S.V. Unraveling the Kinetic Mechanism of the 70-kDa Molecular Chaperones Using Fluorescence Spectroscopic Methods. Journal of Fluorescence 9, 281–293 (1999). https://doi.org/10.1023/A:1020531923349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020531923349

Navigation