Skip to main content
Log in

Status and Prospects for Development of Polyacrylonitrile Fibre Production. A Review

  • Published:
Fibre Chemistry Aims and scope

Abstract

Sixty years of experience in manufacture of fibres from acrylonitrile polymers and copolymers suggest favorable prospects for the development of this kind of textile stock. The characteristics of the primary and supermolecular structure of this class of fibre-forming polymers, the ability to widely vary the methods of converting them into the viscous-flow state, and the methods of spinning, orientational drawing, modification and thermal fixation treatments form the technological base for creation of PAN fibres with defined properties. The basic trends in scientific and technical progress in development of production (volumes and assortment) of PAN fibres are: increasing the unit capacities for production of large-tonnage assortments of fibres while minimizing power and materials consumption; creating multivariant production lines to manufacture fibres for special applications and with specific performance characteristics; increasing the economy of production while minimizing environmental pressure. The important prospects for expanding the areas of application of PAN fibres are due to the reactivity of the functional groups in the polymer substrate. Industrial implementation of technologies based on polymer-analog transformations will allow creating new kinds of materials for use in industry, agriculture, and construction and for data collection, storage, and transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fiber Organon, No. 6, 95 (2001).

  2. H. F. Mark, Polymers to the Year 2000 and Beyond. A Forecast, (February, 1987) (private communication).

  3. H. F. Mark, Chem. Eng. Prog., No. 6, 44–54 (1987).

  4. H. Rein, Z. Angew. Chem., 60, 159–165 (1948); 61, 241–246 (1949); Patent No. BRD 915034.

    Google Scholar 

  5. R. C. Houtz, Res. Text. J., 20,No. 11, 786–791 (1950); USA Patent No. 2404720, 2404724, 2404717 (07.23.46); 2404721, 2404717, 2404727 (07.26.46).

    Google Scholar 

  6. R. Hill (ed.), Fibres from Synthetic Polymers, Elsevier, Amsterdam-Houston-New York-London (1953).

    Google Scholar 

  7. A. B. Pakshver and B. E. Geller, Nitron Fibre Production Chemistry and Technology [in Russian], Goskhimizdat, Moscow (1960).

    Google Scholar 

  8. L. A. Vol'f (ed.), Fibres with Special Properties [in Russian], Khimiya, Moscow (1980).

    Google Scholar 

  9. V. E. Kotina, A. A. Konkin, and R. M. Kosova, USSR Inventor's Certificate No. 13824 (1959).

  10. A. A. Konkin, Carbon and Other Heat-Resistant Fibre Materials [in Russian], Khimiya, Moscow (1974).

    Google Scholar 

  11. B. E. Geller, S. P. Matveeva, and A. B. Pakshver, Nauchn. Dokl. Vyssh. Shkoly, Ser. Khim. Khim. Tekhn., No. 3, 553–558 (1958).

  12. A. A. Geller and B. E. Geller, Khim. Volokna, No. 3, 8–17 (1990).

  13. Ch. Fryer, Chem. Fibers Intern., 51,No. 6, 184–187 (2001).

    Google Scholar 

  14. B. E. Geller, Doctoral Dissertation, Tashkent Textile Institute, Tashkent-Leningrad (1964).

  15. M. Yu. Kirgizbaeva and B. E. Geller, Khim. Volokna, No. 5, 39–40 (1981).

  16. G. M. Gantz, Am. Dyestuff Rep., 41, 100, 116 (1952).

    Google Scholar 

  17. N. Yu. Shirshova, M. Yu. Mukhamedzhanova, and T. Khamrakulov, Khim. Volokna, No. 1, 3–5 (2001).

  18. J. Mayima, N. Masui, et al., Japanese Patent No. 147451, 5/S (1940).

  19. H. Rein, USA Patent No. 2117210, 2140921.

  20. E. A. Pakshver, Zh. Vses. Khim. O-va im. D. I. Mendeleeva, 17,No. 6, 644–647 (1972).

    Google Scholar 

  21. E. A. Pakshver, in: Carbon-Chain Fibres [in Russian], K. E. Perepelkin (ed.), Khimiya, Moscow (1973), pp. 7–163.

    Google Scholar 

  22. B. E. Geller, Khim. Volokna, No. 6, 3–7 (1997).

  23. K. Engel, Chemiefasern/Textilindustrie, 33/85,No. 9, 546–549 (1983).

    Google Scholar 

  24. Yu. M. Malyshev, A. A. Geller, et al., Khim. Volokna, No. 3, 24–25 (1985).

  25. Yu. M. Malyshev and B. E. Geller, Khim. Volokna, No. 6, 41–43 (1993).

  26. H. Schulz, Chemiefasern/Textilindustrie, 42/94,No. 12, 964–968 (1992).

    Google Scholar 

  27. A. T. Serkov, L. A. Zlatoustova, and M. B. Radishevskii, Khim. Volokna, No. 3, 16–20 (2000).

  28. A. L. Kalabin and E. A. Pakshver, Khim. Volokna, No. 4, 38–41 (2000).

  29. A. L. Kalagbin and E. A. Pakshver, Khim. Volokna, No. 1, 12–14 (2001).

  30. M. Pinton, Chem. Fibers Intern., No. 4, 298–300 (1996).

  31. R. Cox, Man-Made Fiber Year Book, No. 8, 32–34 (2001).

  32. F.-G. Nimts, A. A. Geller, and B. Kh. Yunusov, Khim. Volokna, No. 3, 11–13 (1986).

  33. A. A. Geller, Candidate Dissertation, Tashkent-Leningrad (1963).

  34. D. N. Akbarov, Khim. Volokna, No. 1, 18–20, 20–22 (1990).

  35. Zh. A. Zgibneva, A. A. Geller, et al., Khim. Volokna, No. 6, 51–53 (1973).

  36. K. E. Perepelkin, Khim. Volokna, No. 5, 3–16 (2000); No. 6, 3–13.

  37. I. Z. Zakirov, Physical Modification of Polyacrylonitrile Fibre [in Russian], FAN, Tashkent (1982).

    Google Scholar 

  38. I. Z. Zakirov and B. E. Geller, Khim. Volokna, No. 4, 12–14 (1992).

  39. A. I. Yamamoto, Khim. Tekhnol. Polim., No. 4, 141–148 (1964).

  40. I. Z. Zakirov, Candidate Dissertation, Tashkent Institute of Textile and Light Industry, Leningrad (1968).

  41. B. Von Falkai, Chem. Fibers Int., 50,No. 2, 144–150 (2000).

    Google Scholar 

  42. I. Z. Zakirov, B. E. Geller, and G. N. Babenko, Dep. VINITI, No. 1142 (1976).

  43. Kh. N. Muratova, R. I. Danilova, et al., in: Current Problems in Modern Medicine [in Russian], Tashkent (1974), p. 200.

  44. E. N. Zil'berman, Reactions of Nitriles [in Russian], Khimiya, Moscow (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geller, B.E. Status and Prospects for Development of Polyacrylonitrile Fibre Production. A Review. Fibre Chemistry 34, 151–161 (2002). https://doi.org/10.1023/A:1020525628197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020525628197

Keywords

Navigation