Skip to main content
Log in

Effect of the External Refractive Index on Fluorescence Kinetics of Perylene in Human Erythrocyte Ghosts

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence kinetics of perylene molecules in hemoglobin-free human erythrocyte membranes is investigated as a function of the refractive index of the external medium varied by adjusting the concentration of sorbitol or sucrose in an aqueous suspension of erythrocyte ghosts. It has been found that the fluorescence of perylene in erythrocyte ghosts decays nonexponentially, with the mean decay time decreasing from 7.13 to 5.70 ns with an increase in the refractive index of the suspension from 1.333 to 1.442. An analysis of the dependence made it possible to obtain an estimate of the second-rank orientational order parameter of perylene in the human erythrocyte membrane «P 2 (cosθ)» = 0.32 ... 0.43, which bears witness of considerable ordering of perylene molecules along acyl chains of phospholipids constituting the membrane. Good correspondence of the order parameter with the value of the steady-state emission anisoptropy of perylene in erythrocyte ghosts suggests that acyl chains of phospholipids in the human erythrocyte membrane are predominantly oriented along the normal to its surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. M. Purcell (1946) Phys. Rev. 69, 681.

    Google Scholar 

  2. C. M. Soukoulis (Ed.) (1993) Photonic Bandgaps and Localization, Plenum Press, New York.

    Google Scholar 

  3. E. Burstein and C. Weisbuch (Eds.) (1995) Confined Electrons and Photons: New Physics and Applications, Plenum Press, New York.

    Google Scholar 

  4. W. Lukosz (1980) Phys. Rev. B 22, 3030–3038.

    Google Scholar 

  5. H. Khosravi and R. Loudon (1991) Proc. R. Soc. London Ser. A 433, 337–352; 436, 373–389.

    Google Scholar 

  6. H. P. Urbach and G. L. J. A. Rikken (1998) Phys. Rev. A 57, 3913–3930.

    Google Scholar 

  7. J. K. Trautman, J. J. Macklin, T. D. Harris, and L. E. Brus (1996) Science 272, 255–258.

    Google Scholar 

  8. R. E. Kunz and W. Lukosz (1980) Phys Rev. B 21, 4814–4828.

    Google Scholar 

  9. G. L. J. A. Rikken (1995) Phys. Rev. A 51, 4906–4909.

    Google Scholar 

  10. A. N. Rubinov and V. I. Nikolaev (1970) Izv. Akad. Nauk SSSR Ser. Fiz. 34, 1308–1311.

    Google Scholar 

  11. F. De Martini, G. Innocenti, G. R. Jakobowitz, and P. Mataloni (1987) Phys. Rev. Lett. 59, 2955–2958.

    Google Scholar 

  12. M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey (1992) J. Chem. Phys. 97, 7842–7845.

    Google Scholar 

  13. P. Lavallard, M. Rosenbauer, and T. Gacoin (1996) Phys. Rev. A 54, 5450–5453.

    Google Scholar 

  14. J. Martorell and N. M. Lawandy (1990) Phys. Rev. Lett. 65, 1877–1880.

    Google Scholar 

  15. E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko (1998) Phys. Rev. Lett. 81, 77–80.

    Google Scholar 

  16. D. Toptygin, J. Svobodova, I. Konopasek, and L. Brand (1992) J. Chem. Phys. 96, 7919–7930.

    Google Scholar 

  17. D. Toptygin and L. Brand (1993) Biophys. Chem. 48, 205–220.

    Google Scholar 

  18. D. Toptygin and L. Brand (1995) J. Fluoresc. 5, 39–50.

    Google Scholar 

  19. M. Cho (1997) J. Chem. Phys. 107, 4499–4506.

    Google Scholar 

  20. E. Gratton and T. Parasassi (1995) J. Fluoresc. 5, 51–57.

    Google Scholar 

  21. M. M. G. Krishna and N. Periasamy (1998) J. Fluoresc. 8, 81–92.

    Google Scholar 

  22. U. Cogan, M. Shinitzky, G. Weber, and T. Nishida (1973) Biochemistry 12, 521–528.

    Google Scholar 

  23. D. Papahadjopoulos, K. Jacobson, S. Nir, and T. Isac (1973) Biochim. Biophys. Acta 311, 330–348.

    Google Scholar 

  24. I. B. Berlman (1965) Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, New York and London.

    Google Scholar 

  25. M. van Gurp, T. van Heijnsbergen, G. van Ginkel, and Y. K. Levine (1989) J. Chem. Phys. 90, 4103–4111.

    Google Scholar 

  26. J. Szubiakowski, A. Balter, W. Nowak, A. Kowalczyk, K. Wiśniewski, and M. Wierzbowska (1996) Chem. Phys. 208, 283–296.

    Google Scholar 

  27. G. E. Dobretsov (1989) Fluorescent Probes in the Study of Cells, Membranes, and Lipoproteins, Nauka, Moscow [in Russian].

    Google Scholar 

  28. J. S. Beck (1978) J. Theor. Biol. 75, 487–501.

    Google Scholar 

  29. M. R. Lieber and T. L. Steck (1982) J. Biol. Chem. 257, 11651–11659, 11660–11666.

    Google Scholar 

  30. R. Peters (1973) Biophys. Biochim. Acta 318, 469–473.

    Google Scholar 

  31. V. G. Ivkov and G. N. Berestovskii (1982) Lipid Bilayer of Biological Membranes, Nauka, Moscow [in Russian].

    Google Scholar 

  32. G. Guidotti (1972) Annu. Rev. Biochem. 41, 731–752.

    Google Scholar 

  33. G. Lipari and A. Szabo (1980) Biophys. J. 30, 489–506.

    Google Scholar 

  34. C. Zannoni (1981) Mol. Phys. 42, 1303–1320.

    Google Scholar 

  35. Y. Jiang and G. L. Blanchard (1994) J. Phys. Chem. 98, 6436–6440.

    Google Scholar 

  36. A. A. Boldyrev, S. V. Kotelevtsev, M. E. Lanio, K. Alvarez, and P. Perez (1990) Introduction to Biomembranology, Moscow University Publishers, Moscow [in Russian].

    Google Scholar 

  37. J. T. Dodge, C. Mitchell, and D. J. Hanahan (1963) Arch. Biochem. Biophys. 100, 119–130.

    Google Scholar 

  38. Z. I. Lalchev and K. S. Birdi (1988) C. R. Acad. Bulg. Sci. 41, 49–51.

    Google Scholar 

  39. M. A. K. Markwell, S. M. Haas, L. L. Bieber, and N. E. Tolbert (1978) Anal. Biochem. 87, 206–210.

    Google Scholar 

  40. R. M. C. Dawson, D. C. Elliot, W. H. Elliott, and K. M. Jones (1986) Data for Biochemical Research, 3rd ed., Clarendon Press, Oxford.

    Google Scholar 

  41. A. Siemiarczuk, B. D. Wagner, and W. R. Ware (1990) J. Phys. Chem. 94, 1661–1666.

    Google Scholar 

  42. D. M. Gakamsky, A. A. Goldin, E. P. Petrov, and A. N. Rubinov (1992) Biophys. Chem. 44, 47–60; Erratum (1992) Biophys. Chem. 45, 194–195.

    Google Scholar 

  43. E. P. Petrov (1997) in Proceedings of the Vth Internstional Conference on Methods and Applications of Fluorescence Spectroscopy, Köster, Berlin, Paper P142.

    Google Scholar 

  44. J. Večer, A. A. Kowalczyk, and R. E. Dale (1993) Rev. Sci. Instrum. 64, 3403–3412.

    Google Scholar 

  45. N. Ostrowsky, D. Sornette, P. Parker, and E. R. Pike (1981) Opt. Acta 28, 1059–1070.

    Google Scholar 

  46. J. Requena and D. A. Haydon (1975) Proc. R. Soc. Lond. A 347, 161–177.

    Google Scholar 

  47. R. J. Cherry, K. Hsu, and D. Chapman (1972) Biochim. Biophys. Acta 288, 12–21.

    Google Scholar 

  48. R. Peters (1971) Biochim. Biophys. Acta 233, 465–468.

    Google Scholar 

  49. L. G. Astaf'eva and G. P. Ledneva (1998) Personal communication.

  50. M. Shinitzky and Y. Barenholz (1974) J. Biol. Chem. 249, 2652–2657.

    Google Scholar 

  51. E. Prenner, A. Hermetter, G. Landl, H. Stütz, H. F. Kauffmann, and A. J. Kungl (1993) J. Phys. Chem. 97, 2788–2792.

    Google Scholar 

  52. M. Kehry, J. Yguerabide, and S. J. Singer (1976) Science 195, 486–487.

    Google Scholar 

  53. B. Rudy and C. Gitler (1972) Biochim. Biophys. Acta 288, 231–236.

    Google Scholar 

  54. M. B. Feintein, S. M. Fernandez, and R. I. Sha'afi (1975) Biochim. Biophys. Acta 413, 354–370.

    Google Scholar 

  55. J. R. Lakowicz and J. R. Knutson (1980) Biochemistry 19, 905–911.

    Google Scholar 

  56. C. Karolis, H. G. L. Coster, T. C. Chilcott, and K. D. Barrow (1998) Biochim. Biophys. Acta 1368, 247–255.

    Google Scholar 

  57. A. S. Holmes, D. J. S. Birch, K. Suhling, R. E. Imhof, T. Salthammer, and H. Dreeskamp (1991) Chem. Phys. Lett. 186, 189–194.

    Google Scholar 

  58. P. L.-G. Chong, B. W. van der Meer, and T. E. Thompson (1985) Biochim. Biophys. Acta 813, 253–265.

    Google Scholar 

  59. D. M. Gakamsky, A. P. Demchenko, N. A. Nemkovich, A. N. Rubinov, V. I. Tomin, and N. V. Shcherbatska (1992) Biophys. Chem. 42, 49–61.

    Google Scholar 

  60. E. P. Petrov and A. N. Rubinov (1994) Lietuvos Fizikos Žurnalas 34, 47–51.

    Google Scholar 

  61. A. N. Tikhonov and V. Ya. Arsenin (1986) Methods for Solving Ill-Posed Problems, 3rd ed., Nauka, Moscow [in Russian].

    Google Scholar 

  62. C. L. Lawson and R. J. Hanson (1974) Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  63. M. Bertero, P. Boccacci, and E. R. Pike (1982) Proc. R. Soc. Lond. A 383, 15–29.

    Google Scholar 

  64. M. Bertero, C. De Mol, and E. R. Pike (1985) in W.-M. Boerner, H. Brand, L. A. Cram, D. T. Gjessing, A. K. Jordan, W. Keydel, G. Schweirz, and M. Vogel (Eds.), Inverse Methods in Electromagnetic Imaging, Part I, D. Reidel, Dordrecht, pp. 319–328.

    Google Scholar 

  65. G. Wahba (1977) SIAM J. Numer. Anal. 14, 651–667.

    Google Scholar 

  66. G. H. Golub, M. Heath, and G. Wahba (1979) Technometrics 21, 215–223.

    Google Scholar 

  67. P. Geladi and B. R. Kowalski (1986) Anal. Chim. Acta 185, 1–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, E.P., Kruchenok, J.V. & Rubinov, A.N. Effect of the External Refractive Index on Fluorescence Kinetics of Perylene in Human Erythrocyte Ghosts. Journal of Fluorescence 9, 111–121 (1999). https://doi.org/10.1023/A:1020524832493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020524832493

Navigation