Skip to main content
Log in

Evolution of the family of intracellular lipid binding proteins in vertebrates

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Members of the family of intracellular lipid binding proteins (iLBPs) have been implicated in cytoplasmic transport of lipophilic ligands, such as long-chain fatty acids and retinoids. iLBPs are low molecular mass proteins (14–16 kDa) sharing a common structural fold. The iLBP family likely arose through duplication and diversification of an ancestral iLBP gene. Phylogenetic analysis undertaken in the present study indicates that the ancestral iLBP gene arose after divergence of animals from fungi and plants. The first gene duplication was dated around 930 millions of years ago, and subsequent duplications in the succeeding 550 millions of years gave rise to the 16 iLBP types currently recognized in vertebrates. Four clusters of proteins, each binding a characteristic range of ligands, are evident from the phylogenetic tree. Evolution of different binding properties probably allowed cytoplasmic trafficking of distinct ligands. It is speculated that recruitment of an iLBP during evolution of animals enabled the mitochondrial oxidation of long-chain fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flower DR: Structural relationship of streptavidin to the calycin protein superfamily. FEBS Lett 333: 99–102, 1993

    Google Scholar 

  2. Flower DR, Sansom CE, Beck ME, Attwood TK: The first prokaryotic lipocalins. Trends Biochem Sci 20: 498–499, 1995

    Google Scholar 

  3. Flower D: The lipocalin protein family: Structure and function. Biochem J 318: 1–14, 1996

    Google Scholar 

  4. Glatz JFC, van der Vusse GJ: Cellular fatty acid-binding proteins: Their function and physiological significance. Prog Lipid Res 35: 243–282, 1996

    Google Scholar 

  5. Donovan M, Olofsson B, Gustafson AL, Dencker L, Eriksson U: The cellular retinoic acid binding proteins. J Steroid Biochem Mol Biol 53: 459–465, 1995

    Google Scholar 

  6. Spener F, Mukherjea M: Nonenzymatic proteins mediating intracellular lipid transport and metabolism. Current status and emerging trends. Subcell Biochem 16: 1–19, 1990

    Google Scholar 

  7. Levi AJ, Gatmaitan Z, Arias IM: Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J Clin Invest 48: 2156–2167, 1969

    Google Scholar 

  8. Ockner RK, Manning JA, Poppenhausen RB, Ho WK: A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177: 56–58, 1972

    Google Scholar 

  9. Veerkamp JH, Maatman RG: Cytoplasmic fatty acid-binding proteins: Their structure and genes. Prog Lipid Res 34: 17–52, 1995

    Google Scholar 

  10. Börchers T, Spener F: Fatty acid binding proteins. Curr Top Membr 40: 261–294, 1994

    Google Scholar 

  11. Bernlohr DA, Simpson MA, Hertzel AV, Banaszak LJ: Intracellular lipid-binding proteins and their genes. Annu Rev Nutr 17: 277–303, 1997

    Google Scholar 

  12. Di Pietro SM, Veerkamp JH, Santomé JA: Isolation, amino acid sequence determination and binding properties of two fatty-acid-binding proteins from axolotl (Ambistoma mexicanum) liver. Eur J Biochem 259: 127–134, 1999

    Google Scholar 

  13. Ceciliani F, Monaco HL, Ronchi S, Faotto L, Spadon P: The primary structure of a basic (pI 9.0) fatty acid-binding protein from liver of Gallus domesticus. Comp Biochem Physiol B Biochem Mol Biol 109: 261–271, 1994

    Google Scholar 

  14. Banaszak L, Winter N, Xu Z, Bernlohr DA, Cowan S, Jones TA: Lipid-binding proteins: A family of fatty acid and retinoid transport proteins. Adv Protein Chem 45: 89–151, 1994

    Google Scholar 

  15. Thompson J, Winter N, Terwey D, Bratt J, Banaszak L: The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates. J Biol Chem 272: 7140–7150, 1997

    Google Scholar 

  16. Londraville RL: Intracellular fatty acid-binding proteins: Putting lower vertebrates in perspective. Braz J Med Biol Res 29: 707–720, 1996

    Google Scholar 

  17. Folli C, Calderone V, Ottonello S, Bolchi A, Zanotti G, Stoppini M, Berni R: Identification, retinoid binding, and x-ray analysis of a human retinal-binding protein. Proc Natl Acad Sci USA 98: 3710–3715, 2001

    Google Scholar 

  18. Vogel S, Mendelsohn CL, Mertz JR, Piantedosi R, Waldburger C, Gottesman ME, Blaner WS: Characterization of a new member of the fatty acid-binding protein family that binds all-trans-retinol. J Biol Chem 276: 1353–1360, 2001

    Google Scholar 

  19. Conforti L, Tarlton A, Mack TG, Mi W, Buckmaster EA, Wagner D, Perry VH, Coleman MP: A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proc Natl Acad Sci USA 97: 11377–11382, 2000

    Google Scholar 

  20. Prinsen CF, Weghuis DO, Kessel AG, Veerkamp JH: Identification of a human heart FABP pseudogene located on chromosome 13. Gene 193: 245–251, 1997

    Google Scholar 

  21. Haunerland NH, Chisholm JM: Fatty acid binding protein in flight muscle of the locust, Schistocerca gregaria. Biochim Biophys Acta 1047: 233–238, 1990

    Google Scholar 

  22. Haunerland NH: Fatty acid binding protein in locust and mammalian muscle. Comparison of structure, function and regulation. Comp Biochem Physiol B Biochem Mol Biol 109: 199–208, 1994

    Google Scholar 

  23. Haunerland NH, Jacobson BL, Wesenberg G, Rayment I, Holden HM: Three-dimensional structure of the muscle fatty-acid-binding protein isolated from the desert locust Schistocerca gregaria. Biochemistry 33: 12378–12385, 1994

    Google Scholar 

  24. Wu Q, Andolfatto P, Haunerland NH: Cloning and sequence of the gene encoding the muscle fatty acid binding protein from the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 31: 553–562, 2001

    Google Scholar 

  25. Schleicher CH, Cordoba OL, Santomé JA, Dell'Angelica EC: Molecular evolution of the multigene family of intracellular lipid-binding proteins. Biochem Mol Biol Int 36: 1117–1125, 1995

    Google Scholar 

  26. Goldman N: Phylogenetic estimation. In: M.J. Bishop, C.J. Rawlings (eds). DNA and Protein Sequence Analysis - A Practical Approach. IRL Press, Oxford, 1997, pp 279–312

    Google Scholar 

  27. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680, 1994

    Google Scholar 

  28. Sander C: The FSSP database: Fold classification based on structure-structure alignment of proteins. Nucleic Acids Res 24: 206–209, 1996

    Google Scholar 

  29. Strimmer K, Von Haeseler A: Quartet puzzling: A quartet maximumlikelihood method for reconstructing tree topologies. Mol Biol Evol 13: 964–969, 1996

    Google Scholar 

  30. Felsenstein J: PHYLIP. Version 3.57, distributed by the author. University of Washington, Seattle, 1993

    Google Scholar 

  31. Comeron JM: A method for estimating the numbers of synonymous and nonsynonymous substitutions per site. J Mol Evol 41: 1152–1159, 1995

    Google Scholar 

  32. Kumar S, Hedges SB: A molecular timescale for vertebrate evolution. Nature 392: 917–920, 1998

    Google Scholar 

  33. Huelsenbeck JP, Rannala B: Phylogenetic methods come of age: Testing hypotheses in an evolutionary context. Science 276: 227–232, 1997

    Google Scholar 

  34. Hasegawa M, Kishino H, Saitou N: On the maximum likelihood method in molecular phylogenetics. J Mol Evol 32: 443–445, 1991

    Google Scholar 

  35. Trapp BD, Dubois-Dalcq M, Quarles RH: Ultrastructural localization of P2 protein in actively myelinating rat Schwann cells. J Neurochem 43: 944–948, 1984

    Google Scholar 

  36. Oko R, Morales CR: A novel testicular protein, with sequence similarities to a family of lipid binding proteins, is a major component of the rat sperm perinuclear theca. Dev Biol 166: 235–245, 1994

    Google Scholar 

  37. Makalowski W, Boguski MS: Evolutionary parameters of the transcribed mammalian genome: An analysis of 2,820 orthologous rodent and human sequences. Proc Natl Acad Sci USA 95: 9407–9412, 1998

    Google Scholar 

  38. Ottonello S, Scita G, Mantovani G, Cavazzini D, Rossi GL: Retinol bound to cellular retinol-binding protein is a substrate for cytosolic retinoic acid synthesis. J Biol Chem 268: 27133–27142, 1993

    Google Scholar 

  39. Lampron C, Rochette-Egly C, Gorry P, Dollé P, Mark M, Lufkin T, LeMeur M, Chambon P: Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development 121: 539–548, 1995

    Google Scholar 

  40. Kleinjan DA, Dekker S, Guy JA, Grosveld FG: Cloning and sequencing of the CRABP-I locus from chicken and pufferfish: Analysis of the promoter regions in transgenic mice. Transgenic Res 7: 85–94, 1998

    Google Scholar 

  41. Dell'Angelica EC, Ermacora MR, Santomé JA: Purification and partial characterization of a fatty acid-binding protein from the yeast, Yarrowia lipolytica. Biochem Mol Biol Int 39: 439–445, 1996

    Google Scholar 

  42. Harwood J: Fatty acid metabolism. Ann Rev Plant Physiol Plant Mol Biol 39: 101–138, 1988

    Google Scholar 

  43. Kunau WH, Buhne S, de la Garza M, Kionka C, Mateblowski M, Schultz Borchard U, Thieringer R: Comparative enzymology of beta-oxidation. Biochem Soc Trans 16: 418–420, 1987

    Google Scholar 

  44. Knudsen J, Færgeman NJ, Skott H, Hummel R, Borsting C, Rose TM, Andersen JS, Højrup P, Roepstorff P, Kristiansen K: Yeast acyl-CoAbinding protein: Acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size. Biochem J 302: 479–485, 1994

    Google Scholar 

  45. Gray MW: Origin and evolution of organelle genomes. Curr Opin Genet Dev 3: 884–890, 1993

    Google Scholar 

  46. Gray MW, Burger G, Lang BF: Mitochondrial evolution. Science 283: 1476–1481, 1999

    Google Scholar 

  47. Stewart JM, Carlin RC, MacDonald JA, Van-Iderstine S: Fatty acid binding proteins and fatty acid catabolism in marine invertebrates: Peroxisomal β-oxidation. Invert Reprod Devel 25: 73–82, 1994

    Google Scholar 

  48. Schaap FG, Binas B, Danneberg H, van der Vusse GJ, Glatz JFC: Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ Res 85: 329–337, 1999

    Google Scholar 

  49. Rajan N, Kidd GL, Talmage DA, Blaner WS, Suhara A, Goodman DS: Cellular retinoic acid-binding protein messenger RNA: Levels in rat tissues and localization in rat testis. J Lipid Res 32: 1195–1204, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaap, F.G., Van der Vusse, G.J. & Glatz, J.F. Evolution of the family of intracellular lipid binding proteins in vertebrates. Mol Cell Biochem 239, 69–77 (2002). https://doi.org/10.1023/A:1020519011939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020519011939

Navigation