Skip to main content
Log in

A Simple, Inexpensive, and Reliable Method for Measuring Brønsted-Acid Site Densities in Solid Acids

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A method based on amine decomposition has been developed for measuring the Brønsted-acid site densities using a standard, tubular reactor with an on-line gas chromatograph (GC). After exposing a sample to n-propylamine vapor and flushing it in flowing He at 473 K, the sample was ramped in flowing He to 773 K while trapping the products in the GC sample loop using liquid nitrogen. Site densities were determined from the quantity of propene formed by the decomposition of the n-propylammonium ions via the Hofmann-elimination reaction. The use of small amounts of sample was shown to be important for elimination of secondary products. The method was tested using H-ZSM-5, H-FER, H-MOR and H-Y zeolites, as well as a γ-Al2O3 sample, and shown to give essentially exact agreement with temperature-programmed desorption and thermogravimetric analysis measurements of n-propylamine performed in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.O. Haag, Stud. Surf. Sci. Catal. 84 (1994) 1375.

    Google Scholar 

  2. D.H. Olson, W.O. Haag and R.M. Lago, J. Catal. 61 (1980) 390.

    Google Scholar 

  3. W.O. Haag and N.Y. Chen, Catalysis Design: Progress and Prospectives, ed. L.L. Hegedus (Wiley, New York, 1987) p. 181.

    Google Scholar 

  4. A.I. Biaglow, C. Gittleman, R.J. Gorte and R.J. Madon, J. Catal. 129 (1991) 88.

    Google Scholar 

  5. J. Tittensor, R.J. Gorte and D. Chapman, J. Catal. 138 (1992) 714.

    Google Scholar 

  6. P.A. Jacobs and R. von Ballmoos, J. Phys. Chem. 86 (1982) 3050.

    Google Scholar 

  7. J.W. Ward and R.C. Hansford, J. Catal. 13 (1969) 364.

    Google Scholar 

  8. C.L. Angell and P.C. Schaffer, J. Phys. Chem. 69 (1965) 3463.

    Google Scholar 

  9. E.P. Parry, J. Catal. 2 (1963) 371.

    Google Scholar 

  10. H.M. Kao, H.M. Liu, J.C. Jiang, S.H. Lin and C.P. Grey, J. Phys. Chem. B 104 (2000) 4923.

    Google Scholar 

  11. E.F. Rakiewicz, A.W. Peters, R. Wormsbecher, K.J. Sutovich and K.T. Mueller, J. Phys. Chem. B 102 (1998) 2890.

    Google Scholar 

  12. A. Bendada, E.F. Derose and J.J. Fripiat, J. Phys. Chem. 98 (1994) 3838.

    Google Scholar 

  13. D.M. Bibby, L.P. Aldridge and N.B. Milestone, J. Catal. 72 (1981) 373.

    Google Scholar 

  14. J.M. Thomas, S. Ramdas, G.R. Millward, J. Klinowski, M. Audier, J. Gonzales-Calbet and C.A. Fyfe, J. Solid-State Chem. 45 (1982) 368.

    Google Scholar 

  15. J. Klinowski, S. Ramdas, J.M. Thomas, C.A. Fyfe and J.S. Hartman, J. Chem. Soc., Faraday Trans. I 78 (1982) 1025.

    Google Scholar 

  16. A.I. Biaglow, D.J. Parrillo and R.J. Gorte, J. Catal. 144 (1993) 193.

    Google Scholar 

  17. Z. Luz and A.J. Vega, J. Phys. Chem. 91 (1987) 374.

    Google Scholar 

  18. J. Klinowski, Prog.NMR Spectroscopy 16 (1984) 237.

    Google Scholar 

  19. R.J. Gorte, Catal. Lett. 62 (1999) 1.

    Google Scholar 

  20. M.V. Juskelis, J.P. Slanga, T.G. Roberi and A.W. Peters, J. Catal. 138 (1992) 391.

    Google Scholar 

  21. J.L. Woolery, G.H. Kuehl, H.C. Timken, A.W. Chester and J.C. Vartuli, Zeolites 19 (1997) 288.

    Google Scholar 

  22. T.J. Gricus Kofke, R.J. Gorte and W.E. Farneth, J. Catal. 114 (1988) 34.

    Google Scholar 

  23. T.J. Gricus Kofke, R.J. Gorte, G.T. Kokotailo and W.E. Farneth, J. Catal. 115 (1989) 265.

    Google Scholar 

  24. A.I. Biaglow, D.J. Parrillo, G.T. Kokotailo and R.J. Gorte, J. Catal. 148 (1994) 213.

    Google Scholar 

  25. D.J. Parrillo, A.T. Adamo, G.T. Kokotailo and R.J. Gorte, Appl. Catal. A 67 (1990) 107.

    Google Scholar 

  26. C. Pereira and R.J. Gorte, Applied Catalysis A 90 (1992) 145.

    Google Scholar 

  27. J.R. Sohn, S.J. Decanio, P.O. Fritz and J.H. Lunsford, J. Phys. Chem. 90 (1988) 4847.

    Google Scholar 

  28. T.J. Gricus Kofke and R.J. Gorte, J. Catal. 115 (1989) 233.

    Google Scholar 

  29. D.R. Milburn, K. Saito, R.A. Keogh and B.H. Davis, Appl. Catal. A 215 (2001) 191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kresnawahjuesa, O., Gorte, R., de Oliveira, D. et al. A Simple, Inexpensive, and Reliable Method for Measuring Brønsted-Acid Site Densities in Solid Acids. Catalysis Letters 82, 155–160 (2002). https://doi.org/10.1023/A:1020514911456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020514911456

Navigation