Skip to main content
Log in

Treatment of an Autoimmune Disease with “Classical” T Cell Veto: A Proposal

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Immune responses protect against infectious diseases and cancers. In normal circumstances, the immune system is tolerant to self. However, under certain conditions this tolerance is broken. The immune system attacks otherwise normal tissue. An autoimmune disease ensues. Strategies are now being sought that remove the pathogenic T cells without affecting other immune functions. “Classical” veto has been described as an immune suppressive mechanism able to remove T cells in a highly specific and effective manner. The present article briefly reviews the current knowledge on the development of autoreactive T cells and their regulation in the periphery. It describes “classical” veto, its mechanisms, and its novel applications. Finally, it argues that “classical” veto can be adapted to treat an autoimmune disease, such as type I diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rammensee HG: Veto function in vitro and in vivo. Int Rev Immunol 4:175-191, 1989

    Google Scholar 

  2. Miller RG: An immunological suppressor cell inactivating cytotoxic T lymphocyte precursor cells recognizing it. Nature 287:544-548, 1980

    Google Scholar 

  3. Fink PJ, Shimonkevitz RP, Bevan MJ: Veto cells. Annu Rev Immunol 4:175-191, 1989

    Google Scholar 

  4. Ashwell JD, Klausner RD: Genetic and mutational analysis of the T-cell receptor. Annu Rev Immunol 8:139-167, 1990

    Google Scholar 

  5. Weiss A: Molecular and genetic insights into T cell antigen receptor structure and function. Annu Rev Genet 25:487-570, 1991

    Google Scholar 

  6. Bevan MJ, Fink PJ: H-2 antigens of the thymus determine lymphocyte specificity. J Exp Med 148:756-778, 1978

    Google Scholar 

  7. Zinkernagel RM, Callahan GN, Klein J, Dennert G: CTL learn specificity for self H-2 during differentiation in the thymus. Nature 271:251-258, 1978

    Google Scholar 

  8. Kisielow P, Teh HS, von Boehmer H: Positive selection of antigen-specific T cells in the thymus by restricting MHC molecules. Nature 335:730-735, 1988

    Google Scholar 

  9. Shaw WC, Nelson CA, Newborn RD, Cranes DM, Russell JH, Loh DY: Selective expansion of antigen receptors of CD8-bearing T lymphocytes in transgenic mice. Nature 338:271-278, 1988

    Google Scholar 

  10. Sprent J, von Boehmer H, Nabholz M: Immunity and tolerance to host H-2 determinants in irradiated F1 hybrid mice reconstituted with BM cells from one parental strain. J Exp Med 142:321-336, 1975

    Google Scholar 

  11. Marrack P, Kappler J: The T-cell repertoire for antigen and MHC. Immunol Today 9:308-320, 1988

    Google Scholar 

  12. Nikolic-Zugic J, Bevan MJ: Role of self-peptides in positively selecting the T-cell repertoire. Nature 334:65-67, 1990

    Google Scholar 

  13. Pawlowski T, Staerz UD: Thymic education--T cells do it for themselves. Immunol Today 15:205-206, 1994

    Google Scholar 

  14. Ignatowicz L, Kappler J, Marrack P: The repertoire of T cells shaped by a single MHC/peptide ligand. Cell 84:521-529, 1996

    Google Scholar 

  15. Ashton-Rickardt PG, Van Kaer L, Schumacher TN, Ploegh HL, Tonegawa S: Peptide contributes to the specificity of positive selection of CD8+ T cells in the thymus. Cell 73:1041-1049, 1993

    Google Scholar 

  16. Alam SM, Travers DJ, Wing JL, Nashohs W, Redpath S, Jameson SC, Gascoigne ND: T-cell-receptor affinity and thymic positive selection. Nature 381:558-559, 1996

    Google Scholar 

  17. Marrack P, Parker DC: T-cell selection. A little of what you fancy.... Nature 368:397-398, 1994

    Google Scholar 

  18. Jameson SC, Hogquist KA, Bevan MJ: Specificity and flexibility in thymic selection. Nature 369:750-752, 1994

    Google Scholar 

  19. Hogquist KA, Jameson SC, Bevan MJ: Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells. Immunity 3:79-86, 1995

    Google Scholar 

  20. Ashton-Rickardt PG, Bandeira A, Delaney JR, Van Kaer L, Pircher HP, Zinkernagel RM, Tonegawa S: Evidence for a differential avidity model of T cell selection in the thymus. Cell 76:651-663, 1994

    Google Scholar 

  21. Ashton-Rickardt PG, Tonegawa S: A differential-avidity model for T-cell selection. Immunol Today 5:362-366, 1994

    Google Scholar 

  22. Pawlowski T, Singleton MD, Loh DY, Berg R, Staerz UD: Permissive recognition during positive selection. Eur J Immunol 26:851-857, 1996

    Google Scholar 

  23. Kappler JW, Staerz UD, White J, Marrack PC: Self tolerance eliminates T cell specific for Mls-modified products of the major histocompatibility complex. Nature 332:35-40, 1988

    Google Scholar 

  24. Blackmann MA, Gerhard-Burgert H, Woodland DL, Palmer E, Kappler JW, Marrack P: A role for clonal inactivation in T cell tolerance to Mls-1a. Nature 345:540-542, 1990

    Google Scholar 

  25. Parry SL, Hall FC, Olson J, Kamradt T, Sonderstrup G: Autore-activity versus autoaggression: A different perspective on human autoantigens. Curr Opin Immunol 10:663-668, 1998

    Google Scholar 

  26. Link R, Gottesman M, Pernis B: Are tissues a patch quilt of ectopic gene expression? Science 246:262-262, 1989

    Google Scholar 

  27. Takeda S, Rodewald HR, Arakawa H, Bluethmann H, Shimizu T: MHC class II molecules are required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5:217-228, 1997

    Google Scholar 

  28. Brocker T: Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J Exp Med 186:1223-1232, 1997

    Google Scholar 

  29. Nesic D, Vukmanovic S: MHC class I is required for peripheral accumulation of CD8+ thymic emigrants. J Immunol 160:3705-3712, 1998

    Google Scholar 

  30. Tanchot C, Lemonnier FA, Perarnau B, Freitas AA, Rocha B: Differential requirements for survival and proliferation of CD8 naive and memory T cells. Science 276:2057-2062, 1997

    Google Scholar 

  31. Steinman RM, Wirmer-Pack M, Inaba K: Dendritic cells: Antigen presentation, accessory function and clinical relevance. Adv Exp Med Biol 329:1-9, 1993

    Google Scholar 

  32. Lafferty KJ, Prowse SJ, Simeonovic CJ, Warre HA: Immunobiology of tissue transplantation: A return to the passenger leukocyte concept. Annu Rev Immunol 1:143-165, 1983

    Google Scholar 

  33. Coulombe M, Gill RG: Tolerance induction to cultured islet allografts. I. Characterization of the tolerant state. Transplantation 57:1-7, 1994

    Google Scholar 

  34. Burkly LC, Lo D, Kanagawa O, Brinster RL, Flavell RA: T-cell tolerance by clonal anergy in transgenic mice with nonlymphoid expression of MHC class II I-E. Nature 342:546-566, 1989

    Google Scholar 

  35. Schwartz RH: T cell clonal anergy. Curr Opin Immunol 9:351-357, 1997

    Google Scholar 

  36. Charlton B, Lafferty KJ: The TH1/TH2 balance in autoimmunity. Curr Opin Immunol 7:793-798, 1995

    Google Scholar 

  37. Liblau RS, Singer AM, McDevitt HD: TH1 and TH2 CD4+ T cells in the pathogenesis of organ specific autoimmune disease. Immunol Today 16:34-38, 1995

    Google Scholar 

  38. Tscherning T, Claesson MH: Veto suppression: The peripheral way of T cell tolerization. Exp Clin Immunogenet 10:179-188, 1993

    Google Scholar 

  39. Rammensee HG, Fink PJ, Bevan MJ: Functional clonal deletion of class I-specific cytotoxic T lymphocytes by veto cells that express antigen. J Immunol 133:2390-2396, 1984

    Google Scholar 

  40. Martin DR, Miller RG: In vivo administration of histoincompatible lymphocytes leads to rapid functional deletion of cytotoxic T lymphocyte precursors. J Exp Med 170:769-690, 1989

    Google Scholar 

  41. Fink PJ, Rammensee HG, Bevan MJ: Cloned cytolytic T cells can suppress primary cytotoxic responses directed against them. J Immunol 133:1775-1781, 1984

    Google Scholar 

  42. Hiruma K, Nakamura H, Henkart PA, Gress RE: Clonal deletion of postthymic T cells: Veto cells kill precursor cytotoxic T lymphocytes. J Exp Med 175:863-868, 1992

    Google Scholar 

  43. Zhang LI, Martin DR, Fung-Leung WP, The HS, Miller RG: Peripheral deletion of mature CD8+ antigen-specific T cells after in vivo exposure to male antigen. J Immunol 148:3740-3745, 1992

    Google Scholar 

  44. Martin DR, Sheng-Tanner X, Miller RG: Rapid and long-term changes to host cytotoxic T lymphocyte precursors reactive to donor antigens caused by intravenous injection of histoincompatible lymphocytes. Transplantation 54:125-129, 1992

    Google Scholar 

  45. Takeda Y, Yanagie H, Maki T: Cloned veto cells as immunoregulators. Transplant Proc 25:2743-2744, 1992

    Google Scholar 

  46. Rammensee HG, Fink PJ, Bevan MJ: Functional deletion of class I-specific cytotoxic T lymphocytes by veto cells that express the antigen. J Immunol 133:2390-2396, 1984

    Google Scholar 

  47. Tscherning T, Claesson MH: Veto-like down-regulation of T helper cell reactivity in vivo by injection of semi-allogeneic spleen cells. Immunol Lett 29:223-237

  48. Bergenthal A, Hofmann M, Heeg K: Self-veto mechanism of CD8+ cytotoxic effector T cells. Peptide-induced paralysis affects the peptide-MHC-recognizing cytotoxic T lymphocytes and is independent of Fas/Fas ligand interactions. Eur J Immunol 28:1911-1922, 1998

    Google Scholar 

  49. Hurme M: Genetic variation in the in vitro veto activity of bone marrow cells. Scan J Immunol 23:389-392, 1986

    Google Scholar 

  50. Hambor JE, Kaplan DR, Tykocinski ML: CD8 functions as inhibitory ligand in mediating activity of CD8+ cells. J Immunol 145:1646-1652, 1990

    Google Scholar 

  51. Hambor JE, Weber MC, Tykocinski ML, Kaplan DR: Regulation of allogeneic responses: Expression of CD8 alpha-chain on stimulator cells. Int Immunol 2:8856-8879, 1990

    Google Scholar 

  52. Kaplan DR, Hambor JE, Tykocinski ML: An immunoregulatory function for the CD8 molecule. Proc Natl Acad Sci USA 86:8512-8515, 1989

    Google Scholar 

  53. Potter TA, Rajon TV, Dick RRF, Bluestone JA: Substitution at residue 227 of H-2 class I molecules abrogates recognition by CD8 dependent, but CD8 independent cytotoxic T lymphocytes. Nature 337:73-75, 1989

    Google Scholar 

  54. Swain SL: Significance of Lyt phenotype. Lyt-2 antibodies block activities of T cels that recognize class I MHC antigens regardless of function. Proc Natl Acad Sci USA 78:7101-7105, 1981

    Google Scholar 

  55. Smith DM, Bluestone JA, Jeyarajah DR, Newberg MH, Engerlhard VH, Thistlethwaite JR Jr, Woodle ES: Inhibition of T cell activation by a monoclonal antibody reactive against the alpha 3 domain of human MHC class I molecules. J Immunol 153:1054-1067, 1994

    Google Scholar 

  56. Sambhara SR, Miller RG: Programmed cell death of T cell clones signaled by the T cell receptor and the MHC alpha-3 domain. Science 252:1424-1427, 1991

    Google Scholar 

  57. Zhang L, Shannon J, Sheldon J, Teh HS, Mak TW, Miller RG: Role of infused CD8+ cells in the induction of peripheral tolerance. J Immunol 153:2221-2228, 1994

    Google Scholar 

  58. Sumida T, Rurukawa M, Sakamoto A, Namekawa T, Maeda T, Zijstra M, Iwamoto I, Koike T, Yoshida S, Tomoika H, et al.: Prevention of insulitis and diabetes in beta 2-microglobulin-deficient non-obese diabetic mice. Int Immunol 6:1445-1449, 1994

    Google Scholar 

  59. Woodle ES, Smith DM, Bluestone JA, Kirkman WM 3rd, Green DR, Skowronski EW: Anti-human class I MHC antibodies induce apoptosis by a pathway that is distinct from the FAS antigen-mediated pathway. J Immunol 158:2156-2164, 1997

    Google Scholar 

  60. Thomas JM, Carver FM, Kasten-Jolly J, Haisch CE, Rebeletto LM, Gross U, Vore SJ, Thomas FT: Further studies of veto activity in rhesus monkey bone marrow in relation to allograft tolerance and chimerism. Transplantation 57:101-115, 1994

    Google Scholar 

  61. Johnson LL: Prolonged minor allograft survival in intravenously primed mice--A test of the veto hypothesis. Transplantation 44:92-97, 1987

    Google Scholar 

  62. Thomas JM, Carver FM, Cunningham PR, Olson LC, Thomas FT: Kidney allograft tolerance in primates without chronic immunosuppression--The role of veto cells. Transplantation 51:198-207, 1991

    Google Scholar 

  63. Takahashi T, Maki T: Prolonged mouse skin allograft survival by cloned veto suppressor cells. Transplant Proc 23:192-193, 1991

    Google Scholar 

  64. Thomas JM, Verbanac KM, Carver FM, Kasten-Jolly J, Haisch CE, Gross U, Smith JP: Veto cells in transplantation tolerance. Clin Transplant 8:195-203, 1994

    Google Scholar 

  65. Qi Y, Berg R, Singleton MA, Debrick E, Staerz UD: Hybrid antibody mediated veto of cytotoxic T lymphocyte responses. J Exp Med 183:1973-1980, 1996

    Google Scholar 

  66. Thomas JM, Carver FM, Cunningham PR, Olson LC, Thomas FT: Kidney allograft tolerance in primates without chronic immunosuppression--The role of veto cells. Transplantation 51:198-207, 1991

    Google Scholar 

  67. Monaco AP, Wood ML, Maki T, Gozzo JJ: The use of donor-specific bone marrow to induce specific unresponsiveness (tolerance) to tissue allografts. In Chimerism and Tolerance, KJ Ildstadt (ed). RG Landes, Austin, 1995, pp 99-113

    Google Scholar 

  68. Nagata S, Golstein P: The Fas death factor. Science 267:1449-1456, 1995

    Google Scholar 

  69. Watanabe-Fukunaga R, Brannan CI, Copeland PL, Jenkins NA, Nagata S: Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314-317, 1992

    Google Scholar 

  70. Smith CA, Farrah T, Goodwin RG: The receptor superfamily of cellular and viral proteins: Activation, costimulation, and death. Cell 76:959-962, 1994

    Google Scholar 

  71. Vignaux F, Golstein P: Fas-based lymphocyte-mediated cytotoxicity against syngeneic activated lymphocytes: Regulatory pathway? Eur J Immunol 24:923-927, 1994

    Google Scholar 

  72. Miyawaki T, Uehara T, Nibu R, Tsuji T, Yachie A, Yonehara S, Tanuguchi N: Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood. J Immunol 149:3753-3758, 1992

    Google Scholar 

  73. Owen-Schaub LB, Yonehara S, Crump WL, Grimm EA: DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell Immunol 140:197-205, 1992

    Google Scholar 

  74. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC: A role for the C95 ligand in preventing graft rejection. Nature 377:630-632, 1995

    Google Scholar 

  75. Qi Y, Staerz UD: Specific inhibition of CD4+ T lymphocytes by a hybrid antibody. Nature Biotechnol 16:271-275, 1998

    Google Scholar 

  76. Fink PJ, Shimonkevitz RP, Bevan MJ: Veto cells. Annu Rev Immunol 6:115-137, 1988

    Google Scholar 

  77. Kronenberg M: Self-tolerance and autoimmunity. Cell 65:537-542, 1991

    Google Scholar 

  78. Sinha AA, Lopez NT, McDevitt HO: Autoimmune diseases: The failure of self tolerance. Science 284:1380-1384, 1990

    Google Scholar 

  79. Bonifacio E, Lampasona V, Bingley PJ: IA-2 (islet cell antigen 512) is the primary target of humoral autoimmunity against type 1 diabetes associated tyrosine phosphatase autoantigens. J Immunol 161:2648-2654, 1998

    Google Scholar 

  80. Myers MA, Laks MR, Feeney SJ, Mandel TE, Koulmanda M, Bone A, Barley J, Rowley MJ, Mackay IR: Antibodies to ICA512/IA-2 rodent models of IDDM. A Autoimmun 11:265-272, 1998

    Google Scholar 

  81. Kawasaki E, Eisenbarth GS, Wasmeier C, Hutton JC. Autoantibodies to protein tyrosine phosphatase-like proteins in type I diabetes. Overlapping specificities to phogrin and ICA512/IA-2. Diabetes 45:1344-1349, 1996

    Google Scholar 

  82. Aanstoot HJ, Kang SM, Kim J, Linsay LA, Roll U, Knip M, Atkinson M, Mose-Larsen P, Fey S, Ludvigsson J, et al.: Identification and characterization of glima 38, a glycosylated islet cell membrane antigen, which together with GAD65 and IA2 marks the early phases of autoimmune response in type 1 diabetes. J Clin Invest 97:2772-2783, 1996

    Google Scholar 

  83. Kim J, Richter W, Aanstoot HJ, Shi Y, Fu Q, Rajotte R, Warnock G, Baekkeskov S: Differential expression of GAD65 and GAD67 in human, rat, and mouse pancreatic islets. Diabetes 42:1799-1808, 1993

    Google Scholar 

  84. Karlsen AE, Hagopian WA, Petersen JS, Boel E, Dryberg T, Grubin CE, Michelsen BK, Madsen OD, Lernmark A: Recombinant glutamic acid decarboxylase (representing the single isofrom expressed in humans islets) detects IDDM-associated 64,000-M autoantibodies. Diabetes 41:1355-1359, 1992

    Google Scholar 

  85. Walker R, Crooke A, Bone Ajm Dean B, van der Meide P, Baird JD: Induction of class II MHC antigens in vitro on pancreatic B cells isolated from BB/Rats. Dibetologia 29:749-751, 1986

    Google Scholar 

  86. Hoglund P, Mintern J, Waltzinger C, Heath W, Benoist C, Mathis D: Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J Exp Med 189:331-339, 1999

    Google Scholar 

  87. Morgan DJ, Liblau R, Scott B, Fleck S, McDevitt HO, Sarvetnick N, Lo D, Sherman LA: CD8(+) T cell-mediated spontaneous diabetes in neonatal mice. J Immunol 157:978-983, 1996

    Google Scholar 

  88. Mottram OL, Murray-Segal LJ, Han W, Maguire J, Stein-Oakley A, Mandel TE: Long-term survival of segmental pancreas isografts in NOD/Lt mice treated with anti-CD4 and anti-CD8 monoclonal antibodies. Diabetes 47:1399-1405, 1998

    Google Scholar 

  89. Susan Wong F, Visintin I, Wen L, Granata J, Flavell R, Janeway CA: The role of lymphocyte subsets in accelerated diabetes in nonobese diabetic-rat insulin promotor-B7-1 (NOD-RIP-B7-1) mice. J Exp Med 187:1985-1993, 1998

    Google Scholar 

  90. Yoneda R, Yokono K, Nagata M, Tominaga Y, Moriyama H, Tsukamoto K, Miki M, Okamoto N, Yasuda H, Amano K, Kasuga M: CD8 cytotoxic T-cell clone rapidly transfers autoimmune diabetes in very young NOD and MHC class I-compatible scid mice. Diabetologia 40:1044-1052, 1997

    Google Scholar 

  91. Serreze DV, Gallichan WS, Snider DP, Croitoru K, Rosenthal KL, Leiter EH, Christianson GJ, Dudley ME, Roopenian DC: MHC class I-mediated antigen presentation and induction of CD8+ cytotoxic T-cell responses in autoimmune diabetes-prone NOD mice. Diabetes 45:902-908, 1996

    Google Scholar 

  92. Lan MS, Wasserfall C, Maclaren NK, Notkins AL: IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 93:6367-6370, 1996

    Google Scholar 

  93. Solimena M, Dirkx R Jr, Hermel JM, Pleasic-Williams S, Shapiro JA, Caron L, Rabin DU: ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. EMBO J 15:2102-2114, 1996

    Google Scholar 

  94. Haskins K, McDuffie M: Acceleration of diabetes in young NOD mice with a CD4+ islet specific T cell clone. Science 299:1433-1436, 1990

    Google Scholar 

  95. DiLorenzo TP, Graser RT, Ono T, Christianson GJ, Chapman HD, Roopenian DC, Nathenson SG, Serreze DV: Major histocompatibility complex class I-restricted T cells are required for all but the end stages of diabetes development in nonobese diabetic mice and use a prevalent T cell receptor alpha chain gene rearrangement. Proc Natl Acad Sci USA 95:12538-12543, 1998

    Google Scholar 

  96. Kizirogiu F, Miller RG: In vivo functional clonal deletion of recipient CD4+ T helper precursor cells that recognize class II MHC on injected donor lymphoid cells. J Immunol 46:1104-1112, 1991

    Google Scholar 

  97. Kang SM, Schneider DB, Lin Z, Hanahan D, Dicheck DA, Stock PG, Baekkeskov S: Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med 3:738-743, 1997

    Google Scholar 

  98. Takeuchi T, Ueki T, Nishimatsu H, Kajiwara T, Ishida T, Jishage KI, Ueda O, Suzuki H, Li B, Moriyama N, Kitamura T: Accelerated rejection of FAS ligand expressing heart grafts. J Immunol 162:518-522, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staerz, U.D., Qi, Y. Treatment of an Autoimmune Disease with “Classical” T Cell Veto: A Proposal. J Clin Immunol 19, 195–202 (1999). https://doi.org/10.1023/A:1020511928974

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020511928974

Navigation