Skip to main content
Log in

Time-Resolved Resonance Raman Investigation of Oxygen Reduction Mechanism of Bovine Cytochrome c Oxidase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Six oxygen-associated resonance Raman bands were identified for intermediates in the reaction of bovine cytochrome c oxidase with O2 at room temperature. The primary intermediate, corresponding to Compound A of cryogenic measurements, is an O2 adduct of heme a 3 and its isotope frequency shifts for 16O18O have established that the binding is of an end-on type. This is followed by two oxoheme intermediates, and the final intermediate appearing around 3 ms is the Fe–OH heme. The reaction rate between the two oxoheme intermediates is significantly slower in D2O than in H2O, suggesting that the electron transfer is regulated by proton translocations at this step. It is noted that the reaction intermediates of oxidized enzyme with hydrogen peroxide yield the same three sets of oxygen isotope-sensitive bands as those of oxoheme intermediates seen for O2 reduction and that the O–O bond has already been cleaved in the so-called peroxy form (or 607 nm form).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Wikstrom, K. Krab, and M. Saraste, Cytochrome Oxidase; A Synthesis, Academic Press, New York (1981).

    Google Scholar 

  2. G. T. Babcock and M. Wikstrom, Nature 356, 301-309 (1992).

    PubMed  Google Scholar 

  3. M. Wikstrom, Proc. Natl. Acad. Sci. USA 78, 4051-4055 (1981).

    PubMed  Google Scholar 

  4. N. Sone and P. C. Hinkle, J. Biol. Chem. 257, 12600-12604 (1982).

    PubMed  Google Scholar 

  5. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono and S. Yoshikawa, Science 269, 1069-1074 (1995).

    PubMed  Google Scholar 

  6. Y. Orii, Ann. N.Y. Acad. Sci. 550, 105-117 (1988).

    PubMed  Google Scholar 

  7. R. S. Blackmore, C. Greenwood, and Q. H. Gibson, J. Biol. Chem. 266, 19245-19249 (1991).

    PubMed  Google Scholar 

  8. M. Oliveberg and B. G. Malmstrom, Biochemistry 31, 3560 (1992).

    PubMed  Google Scholar 

  9. B. Chance, C. Saronio, and J. S. Leigh, Jr., J. Biol. Chem. 250, 9226-9237 (1975).

    PubMed  Google Scholar 

  10. G. M. Clore L.-E. Andreasson, B. Karlsson, R. Aasa, and B. G. Malmstrom, Biochem. J. 185, 139-154 (1980).

    PubMed  Google Scholar 

  11. D. F. Blair, S. N. Witt, and S. I. Chan, J. Am. Chem. Soc. 107, 7389-7399 (1985).

    Google Scholar 

  12. C. Varotsis, W. H. Woodruff, and G. T. Babcock J. Am. Chem. Soc. 111, 6439 (1989) 112, 1297 (1990).

    Google Scholar 

  13. C. Varotsis, Y. Zhang, E. H. Appelman, and G. T. Babcock, Proc. Natl. Acad. Sci. USA 90, 237 (1993).

    PubMed  Google Scholar 

  14. S. Han, Y.-C. Ching, and D. L. Rousseau, Proc. Natl. Acad. Sci. USA 87, 2491-2495 (1990).

    PubMed  Google Scholar 

  15. S. Han, Y.-C. Ching, and D. L. Rousseau, Nature 348, 89-90 (1990).

    PubMed  Google Scholar 

  16. T. Ogura, S. Takahashi, K. Shinzawa-Itoh, S. Yoshikawa, and T. Kitagawa, J. Am. Chem. Soc. 112, 5630-5631 (1990).

    Google Scholar 

  17. T. Ogura, S. Takahashi, K. Shinzawa-Itoh, S. Yoshikawa, and T. Kitagawa, Bull. Chem. Soc. Jpn. 64, 2901-2907 (1991).

    Google Scholar 

  18. T. Ogura, S. Takahashi, S. Hirota, K. Shinzawa-Itoh, S. Yoshikawa, E. H. Appelman, and T. Kitagawa, J. Am. Chem. Soc. 115, 8527-8536 (1993).

    Google Scholar 

  19. T. Ogura, S. Hirota, D. A. Proshlyakov, K. Shinzawa-Itoh, S. Yoshikawa, and T. Kitagawa, J. Am. Chem. Soc. 118, 5443-5449 (1996).

    Google Scholar 

  20. S. Takahashi, T. Ogura, K. Shizawa-Itoh, S. Yoshikawa, and T. Kitagawa, Biochemistry 32, 3664-3670 (1993).

    PubMed  Google Scholar 

  21. T. Kitagawa and T. Ogura, Prog. Inorg. Chem. 45, 431-479 (1997).

    Google Scholar 

  22. T. Kitagawa and T. Ogura, Adv. Spectrosc. 21, 139-188 (1993).

    Google Scholar 

  23. T. Ogura and T. Kitagawa, Rev. Sci. Instrum. 59, 1316-1320 (1988).

    Google Scholar 

  24. K. Nagai, T. Kitagawa, and H. Morimoto, J. Mol. Biol. 136, 271-289 (1980).

    PubMed  Google Scholar 

  25. S. A. Asher and T. M. Schuster, Biochemistry 18, 5377-5387 (1979).

    PubMed  Google Scholar 

  26. S. Han, Y.-C. Ching, and D. L. Rousseau, J. Am. Chem. Soc. 112, 9445-9450 (1990).

    Google Scholar 

  27. C. Varotosis, W. H. Woodruff, and G. T. Babcock, J. Biol. Chem. 265, 11131-11136 (1990).

    PubMed  Google Scholar 

  28. S. Hirota, T. Mogi, T. Ogura, T. Hirano, Y. Anraku, and T. Kitagawa, FEBS Lett. 352, 67-70 (1994).

    PubMed  Google Scholar 

  29. T. V. Vygodina and A. A. Konstantinov, Ann. N.Y. Acad. Sci. 550, 124-138 (1988).

    PubMed  Google Scholar 

  30. M. Fabian and G. Palmer, Biochemistry 34, 13802-13810 (1995).

    PubMed  Google Scholar 

  31. D. A. Proshlyakov, T. Ogura, K. Shinzawa-Itoh, S. Yoshikawa, and T. Kitagawa, Biochemistry 35, 76-82 (1996).

    PubMed  Google Scholar 

  32. D. A. Proshlyakov, T. Ogura, K. Shinzawa-Itoh, S. Yoshikawa, E. H. Appelman, and T. Kitagawa, J. Biol. Chem. 269, 29385-29388 (1994).

    PubMed  Google Scholar 

  33. D. A. Proshlyakov, T. Ogura, K. Shinzawa-Itoh, S. Yoshikawa, and T. Kitagawa, Biochemistry 35, 8580-8586 (1996).

    PubMed  Google Scholar 

  34. H. Fujii and K. Ichikawa, Inorg. Chem. 31, 1110-1112 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, T., Ogura, T. Time-Resolved Resonance Raman Investigation of Oxygen Reduction Mechanism of Bovine Cytochrome c Oxidase. J Bioenerg Biomembr 30, 71–79 (1998). https://doi.org/10.1023/A:1020511612194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020511612194

Keywords

Navigation