Skip to main content
Log in

Macaque Masseter Muscle: Internal Architecture, Fiber Length and Cross-Sectional Area

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Models of mastication require knowledge of fiber lengths and physiological cross-sectional area (PCS): a proxy for muscle force. Yet only a small number of macaques of various species, ages, and sexes inform the previous standards for masseter muscle architecture. I dissected 36 masseters from 30 adult females of 3 macaque species—Macaca fascicularis, M. mulatta, M. nemestrina—using gross and chemical techniques and calculated PCS. These macaques have mechanically similar dietary niches and exhibit no significant difference in masseter architecture or fiber length. Intramuscular tendons effectively compartmentalize macaque masseters from medial to lateral. Fiber lengths vary by muscle subsection but are relatively conservative among species. Fiber length does not scale with body size (mass) or masseter muscle mass. However, PCS scales isometrically with body size; larger animals have greater force production capabilities. PCS scales positively allometrically with facial size; animals with more prognathic faces and taller mandibular corpora have greater PCS, and hence force, values. This positive allometry counters the less efficient positioning of masseter muscles in longer-faced animals. In each case, differences in PCS among species result from differences in muscle mass not fiber length. Masseter PCS is only weakly correlated with bone proxies previously used to estimate muscle force. Thus predictions of muscle force from bone parameters will entail large margins of errors and should be used with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Albrecht, G. H. (1978). The craniofacial morphology of the Sulawesi macaques: Multivariate approaches to biological problems. Contrib. to Primatol. 13: 1–151.

    Google Scholar 

  • Antón, S.C. (1990). Neandertals and the anterior dental loading hypothesis: A biomechanical evaluation of bite force production. Kroeber Anthropol. Soc. Papers 71–72: 67–76.

    Google Scholar 

  • Antón, S. C. (1993). Internal masticatory muscle architecture in the Japanese macaque and its influence on bony morphology. Am. J. Phys. Anthrop. Supplement 16:50 (abstract).

    Google Scholar 

  • Antón, S. C. (1994a). Masticatory Muscle Architecture and Bone Morphology in Primates, PhD dissertation, Department of Anthropology, University of California, Berkeley.

    Google Scholar 

  • Antón, S. C. (1994b). Mechanical and other perspectives on Neandertal craniofacial morphology. In Corruccini, R.S., and Ciochon, R. L (eds.), Integrative Pathways to the Past: Paleoanthropological Advances in Honor of F. Clark Howell, Prentice Hall, New Jersey, pp. 677–695.

    Google Scholar 

  • Antón, S. C. (1996a). Cranial adaptation to a high attrition diet in Japanese macaques. Int. J. Primatol. 17: 401–427.

    Google Scholar 

  • Antón, S. C. (1996b). Tendon associated bone features of the masticatory system in Neandertals. J.Hum. Evol. 31:391–408.

    Google Scholar 

  • Bernstein, I. S. (1967). A field study of the pigtail monkey (Macaca nemestrina). Primates 8: 217–228.

    Google Scholar 

  • Bouvier, M. (1986). A biomechanical analysis of mandibular scaling in Old World monkeys. Am. J. Phys. Anthrop. 69: 474–482.

    Google Scholar 

  • Bouvier, M., and Tsang, S. M. (1990). Comparison of muscle mass and force ratios in New and Old World monkeys. Am. J. Phys. Anthrop. 82: 509–515.

    PubMed  Google Scholar 

  • Buchner, H. (1877). Kritische und experimentelle Studien ueber den Zusammenhalt des Hueftgelenks waehrend des Lebens in alien normalen Faellen. Arch. Anat. Physiol. 1877: 22–45.

    Google Scholar 

  • Cachel, S. M. (1979). A functional analysis of the primate masticatory system and the origin of the anthropoid post-orbital septum. Am. J. Phys. Anthrop. 50: 1–18.

    Google Scholar 

  • Cachel, S. M.(1984). Growth allometry in primate masticatory muscles. Archs. Oral Biol. 29: 287–293.

    Google Scholar 

  • Carlsoo, S. (1952). Nervous coordination and mechanical function of mandibular elevators: An electromyographic study of the activity and anatomic analysis of the mechanics of the muscles. Ada Odont. Scand. (Suppl. 11).

  • Cheverud, J. M. (1981). Epiphyseal union and dental eruption in Macaca mulatta. Am. J. Phys. Anthrop. 56: 157–167.

    PubMed  Google Scholar 

  • Crockett, C. M., and Wilson, W. L. (1980). The ecological separation of Macaca nemestrina and M.fascicularis. In Lindburg, D. G. (ed.), The Macaques: Studies in Ecology, Behavior and Evolution, Van Nostrand Reinhold, San Francisco, pp. 148–181.

    Google Scholar 

  • Cronin, J. E., Cann, R., and Sarich, V. M. (1980). Molecular evolution and systematics of the genus Macaca. In Lindburg, D. G. (ed.), The Macaques: Studies in Ecology, Behavior and Evolution, Van Nostrand Reinhold, San Francisco, pp. 31–51.

    Google Scholar 

  • Daegling, D. J. (1989). Biomechanics of cross-sectional size and shape in the hominoid mandibular corpus. Am. J. Phys. Anthrop. 80: 91–106.

    PubMed  Google Scholar 

  • Daegling, D. J. (1992). Mandibular morphology and diet in the genus. Cebus. Int. J. Primatol. 13: 545–570.

    Google Scholar 

  • Dechow, P. C. and Carlson, D. S. (1990) Occlusal force and craniofacial biomechanics during growth in Rhesus monkeys. Am. J. Phys. Anthrop. 83: 219–237.

    PubMed  Google Scholar 

  • Demes, B., and Creel, N. (1988). Bite force, diet and cranial morphology of fossil hominids. J. Hum. Evol. 17: 657–670.

    Google Scholar 

  • Emerson, S. B., and Radinsky, L. B. (1980). Functional analysis of sabertooth cranial morphology. Paleobiol. 6: 295–312.

    Google Scholar 

  • Gans, C. (1982). Fiber architecture and muscle function. Exer. Sport Sci. Rev. 10: 160–207.

    Google Scholar 

  • Gans, C., and de Vree, F. (1987). Functional bases of fiber length and angulation in muscle. J. Morph. 192: 63–85.

    PubMed  Google Scholar 

  • Gaspard, M., Laison, F., and Mailland, M. (1973a). Organisation architecturale et texture du muscle masseter chez les Primates et l'homme. J. Biol. Buccale. 1: 7–20.

    PubMed  Google Scholar 

  • Gaspard, M., Laison, F., and Mailland, M. (1973b). Organisation architecturale du muscle temporal et des faisceaux de transition du complexe temporo-masseterin chez les Primates et l'homme. J. Biol. Buccale 1: 171–196.

    Google Scholar 

  • Gaspard, M., Laison, F., and Mailland, M. (1973c). Organisation architecturale et texture des muscles pterygoidiens chez les Primates superieurs. J. Biol. Buccale 1: 215–233.

    Google Scholar 

  • Gaspard, M., Laison, F., and Mailland, M. (1973d). Organisation architecturale et texture des muscles pterygoidiens chez l'homme. J. Biol. Buccale 1: 353–366.

    PubMed  Google Scholar 

  • Hatcher, D. C., Faulkner, M. G., and Hay, A. (1986). Development of mechanical and mathematical models to study temporomandibular joint loading. J. Pros. Dent. 55: 377–384.

    Google Scholar 

  • Herring, S. W., Grimm, A. F., and Grimm, B. R. (1979) Functional heterogeneity in a multipinnate muscle. Am. J. Anat. 154: 563–576.

    PubMed  Google Scholar 

  • Hiiemae, K. M. (1971). The structure and function of the jaw muscles in the rat (Rattus norvegicus L.) III. The mechanics of the muscles. Zool. J. Linn. Soc. 50: 111–132.

    Google Scholar 

  • Hill, W. C. O. (1974). Primates: Comparative Anatomy and Taxonomy VII: Cynopithecinae. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Honee, G. L. J. M. (1972). The anatomy of the lateral pterygoid muscle. Acta Morphol. Neerl.-Scand. 10: 331–340.

    PubMed  Google Scholar 

  • Hylander, W. L. (1975). The human mandible: Lever or link? Am. J. Phys. Anthrop. 43: 227–242.

    PubMed  Google Scholar 

  • Hylander, W. L. (1977). Morphological changes in human teeth and jaws in a high-attrition environment. In Dahlberg A. A., and Graber, T. M. (eds.), Orofacial Growth and Development, Mouton Publishers, Paris, pp. 301–330.

    Google Scholar 

  • Hylander W. L. (1985) Mandibular function and biomechanical stress and scaling. Am. Zool. 25: 315–330.

    Google Scholar 

  • Hylander, W. L. (1988). Implications of in vivo experiments for interpreting the functional significance of “robust” australopithecine jaws. In Grine, F. E. (ed.), Evolutionary History of theRobustAustralopithecines, Aldine de Gruyter, New York, pp. 55–83.

    Google Scholar 

  • Hylander, W. L. and Johnson, K. R. (1994). Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons. Am. J. Phys. Anthrop. 94: 523–48.

    PubMed  Google Scholar 

  • Iwamoto, M. (1967) Morphological studies of Macaca fuscata: VI. Somatometry. Primates 8:217–228.

    Google Scholar 

  • Kallfelz-Klemish, C. F., and Franciscus, R. G. (1997). Static bite force production in Neandertals and modern humans. Am. J. Phys. Anthrop. Suppl. 24: 140 (abstract).

    Google Scholar 

  • Kay, R. F. (1975) The functional adaptations of primate molar teeth. Am. J. Phys. Anthrop 43: 195–216.

    PubMed  Google Scholar 

  • Kiltie, R. A. (1982) Bite force as a basis for niche differentiation between rain forest peccaries (Tayassu tajacu and T. pecari). Biotropica 14: 188–195.

    Google Scholar 

  • Koolstra, J. H., van Eijden, T. M. G. J., Weijs, W. A., and Naeije, M. (1988). A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces. J.Biomech. 21: 563–576.

    PubMed  Google Scholar 

  • Loeb, G. E., and Gans, C. (1986). Electromyography for Experimentalists, University of Chicago Press, Chicago.

    Google Scholar 

  • Morales, J. C. and Melnick, D. J. (1998) Phylogenetic relationships of the macaques (Cercopithecidae: Macaca) as revealed by high resolution restriction site mapping of mitochondrial ribosomal genes. J. Hum. Evol. 34: 1–23.

    PubMed  Google Scholar 

  • Preuschoft, H., Demes, B., Meyer, M., and Bar, H. F. (1986). The biomechanical principles realised in the upper jaw of long-snouted primates. In Else, J. G., and Lee, P. C. (eds.), Primate Evolution, Cambridge University Press, New York, pp. 249–264.

    Google Scholar 

  • Prychodko, W., Goodman, M., Singal, B. M., Wess, M. L., Ishimoto, G., and Tanaka, T. (1971). Starch-gel electrophoretic variants of erythrocyte 6-phosphogluconate dehydrogenase in Asian macaques. Primates 12: 175–182.

    Google Scholar 

  • Radinsky, L. (1981). Evolution of skull shape in carnivores: 1 Representative modern carnivores. Biol. J. Linn. Soc. 15: 369–388.

    Google Scholar 

  • Radinsky, L. (1984) Ontogeny and phylogeny in horse skull evolution. Evolution 38: 1–15.

    Google Scholar 

  • Ravosa, M. J. (1996) Jaw morphology and function in living and fossil Old World monkeys. Int. J. Primatol. 17: 909–932.

    Google Scholar 

  • Rodman, P. S. (1991). Structural differentiation of microhabitats of sympatric Macaca fascicularis and M. nemestrina in East Kalimantan, Indonesia. Int. J. Primatol. 12: 357–375.

    Google Scholar 

  • Schumacher, G. H. (1961). Funktionelle Morphologie der Kaumuskulatur. Jena: VEB Gustav Fischer Verlag.

    Google Scholar 

  • Strzalko, J. and Malinowski, A. (1972). The muscles of mastication and cranial proportions in primates. Folia Morphol. 31: 207–213.

    Google Scholar 

  • Takahashi, L. K. and Pan, R. (1994). Mandibular morpholometrics among macaques: The case of Macaca thibetana. Int. J. Primatol. 15: 597–621.

    Google Scholar 

  • Tanabe, Y, Ogawa, M., and Nozawa, K. (1974). Polymorphism of thyroxine-binding prealbumin (TBPA) in primate species. Japan. J. Gen. 49: 265–273.

    Google Scholar 

  • Tattersall, I. (1973). Cranial anatomy of the Archaeolemurinae (Lemuroidea, Primates). Am. Mus. Nat. Hist. Anthrop. Papers 52: 1–110.

    Google Scholar 

  • Throckmorton, G. S., and Throckmorton, L. S. (1985). Quantitative calculations of temporomandibular joint reaction forces I. The importance of the magnitude of the jaw muscle forces. J. Biomech. 18: 445–452.

    PubMed  Google Scholar 

  • Turnbull, W. D. (1970). Mammalian masticatory apparatus. Fieldiana Geol. 18: 1–356.

    Google Scholar 

  • van der Klaauw, C. J. (1963). Projections, deepenings and undulations of the surface of the skull in relation to the attachment of muscles. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Natuurkunde 55: 1–270.

    Google Scholar 

  • van Eijden, T. M. G. J., Blanksma, N. G., and Brugman, P. (1993). Amplitude and timing of EMG activity in the human masseter muscle during selected motor tasks. J. Dent. Res. 72: 599–606.

    PubMed  Google Scholar 

  • Vinyard, C. J. and Ravosa, M. J. (1998) Ontogeny, function, and scaling of the mandibular symphysis in Papionin Primates. J. Morph. 235: 157–175.

    PubMed  Google Scholar 

  • Weber, E. F. (1846). Ueber die laegenverhaeltnisse der Fleischfasern der Muskeln im Allgemeinen. Berichte ueber die Verhandlungen der koeniglich saechisichen Gesselschaft der Wissenschaften zu Leipsig. Mathematische-Physische Classe, II: 63.

    Google Scholar 

  • Weijs, W. A., and Dantuma, R. (1975). Electromyography and mechanics of mastication in the albino rat. J. Morphol. 146: 1–34.

    PubMed  Google Scholar 

  • Weijs, W. A., and Hillen, B. (1984a). Relationship between the physiologic cross-section of the human jaw muscles and their cross-sectional area in computer tomograms. Acta. Anat. 118: 128–138.

    Google Scholar 

  • Weijs, W. A., and Hillen, B.(1984b). Relationships between masticatory muscle cross-section and skull shape. J. Dent. Res. 63: 1154–1157.

    PubMed  Google Scholar 

  • Weijs, W. A., and Hillen, B. (1985a). Physiologic cross-section of the human jaw muscles. Acta. Anat. 121:31–35.

    PubMed  Google Scholar 

  • Weijs, W. A., and Hillen, B. (1985b). Cross-sectional areas and estimated intrinsic strength of the human jaw muscles. Acta. Morphol. Neerl.-Scand. 23: 267–274.

    PubMed  Google Scholar 

  • Weiss, M. L., Goodman, M., Prychodko, W., and Tanaka, T. (1971). Species and geographic distribution patterns of the macaque prealbumin polymorphism. Primates 12: 75–80.

    Google Scholar 

  • Weiss, M. L., Goodman, M., Prychodko, W., Moore, G. W., and Tanaka, T. (1973). An analysis of macaque systematics using gene frequency data. J. Hum. Evol. 2: 213–226.

    Google Scholar 

  • Wheatley, B. P. (1980). Feeding and ranging of East Bornean Macaca fascicularis. In Lindburg, D. G. (ed.), The Macaques: Studies in Ecology, Behavior and Evolution, Van Nostrand Reinhold, San Francisco, pp. 215–246.

    Google Scholar 

  • Yoshikawa, T. (1963). The lamination of the M. masseter of the crab-eating monkey, orang-utan and gorilla. Primates 3: 81 (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Antón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antón, S.C. Macaque Masseter Muscle: Internal Architecture, Fiber Length and Cross-Sectional Area. International Journal of Primatology 20, 441–462 (1999). https://doi.org/10.1023/A:1020509006259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020509006259

Navigation