Skip to main content
Log in

The Dinuclear Center of Cytochrome bo 3 from Escherichia coli

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

For the study of the dinuclear center of heme-copper oxidases cytochrome bo 3 from Escherichia coli offers several advantages over the extensively charactererized bovine cytochrome c oxidase. The availability of strains with enhanced levels of expression allows purification of the significant amounts of enzyme required for detailed spectroscopic studies. Cytochrome bo 3 is readily prepared as the fast form, with a homogeneous dinuclear center which gives rise to characteristic broad EPR signals not seen in CcO. The absence of CuA and the incorporation of protohemes allows for a detailed interpretation of the MCD spectra arising from the dinuclear center heme o 3. Careful analysis allows us to distinguish between small molecules that bind to heme o 3, those which are ligands of CuB, and those which react to yield higher oxidation states of heme o 3. Here we review results from our studies of the reactions of fast cytochrome bo 3 with formate, fluoride, chloride, azide, cyanide, NO, and H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Au, D. C.-T., and Gennis, R. B. (1987). J. Bacteriol. 169, 3237-3242.

    PubMed  Google Scholar 

  • Babcock, G. T., and Wikström, M. (1992). Nature 301-309.

  • Baker, G. M., and Gullo, S. M. (1994). Biochemistry 33, 8058-8066.

    PubMed  Google Scholar 

  • Baker, G. M., Noguchi, M., and Palmer, G. (1987). J. Biol. Chem. 262, 595-604.

    PubMed  Google Scholar 

  • Barnes, Z., Bacock, G. T., and Dye, J. L. (1991). Biochemistry 30, 7597-7603.

    PubMed  Google Scholar 

  • Brittain, T., Baker, A. R., Butler, C. S., Little, R. H., Lowe, D. J., Greenwood, C., and Watmough, N. J. (1997). Biochem. J. 326, 109-115.

    PubMed  Google Scholar 

  • Brittain, T., Little, R. H., Greenwood, C., and Watmough, N. J. (1996). FEBS Lett. 399, 21-25.

    PubMed  Google Scholar 

  • Brudvig, G. W., Stevens, T. H., and Chan, S. I. (1980). Biochemistry 19, 5275-5285.

    PubMed  Google Scholar 

  • Brudvig, G. W., Morse, R. H., and Chan, S. I. (1986). J. Magn. Reson. 67, 189-201.

    Google Scholar 

  • Butler, C. S., Seward, H. E., Greenwood, C., and Thomson, A. J. (1997). Biochemistry 36, 16259-16266.

    PubMed  Google Scholar 

  • Cheesman, M. R., Watmough, N. J., Pires, C. A., Turner, R., Brittain, T., Gennis, R. B., Greenwood, C., and Thomson, A. J. (1993). Biochem. J. 289, 709-718.

    PubMed  Google Scholar 

  • Cheesman, M. R., Watmough, N. J., Gennis, R. B., Greenwood, C., and Thomson, A. J. (1994). Eur. J. Biochem. 219, 595-602.

    PubMed  Google Scholar 

  • Dunham, W. R., Sands, R. H., Shaw, R. W., and Beinert, H. (1983). Biochim. Biophys. Acta 748, 73-85.

    PubMed  Google Scholar 

  • Farrar, J. A., Neese, F., Lappalainen, P., Kroneck, P. M. H., Saraste, M., Zumft, W. G., and Thomson, A. J. (1996). J. Am. Chem. Soc. 118, 11501-11514.

    Google Scholar 

  • Fee, J. A., Zimmerman, B. H., Nitsche, C. I., Rusnack, F., and Münck, E. (1988). Chem. Scr. 28A, 75-78.

    Google Scholar 

  • Ferguson-Miller, S., and Babcock, G. T. (1996). Chem. Rev. 96, 2889-2907.

    PubMed  Google Scholar 

  • Gibson, Q. H., and Greenwood, C. (1963). Biochem. J. 86, 541-.

    PubMed  Google Scholar 

  • Girsch, P., and de Vries, S. (1997). Biochim. Biophys. Acta 1318, 202-216.

    PubMed  Google Scholar 

  • Greenwood, C., Wilson, M. T., and Brunori, M. (1974). Biochem. J. 137, 205-215.

    PubMed  Google Scholar 

  • Hagen, W. R. (1982). Biochim. Biophys. Acta 708, 82-98.

    Google Scholar 

  • Hosler, J. P., Ferguson-Miller, S., Calhoun, M. W., Thomas, J. W., Hill, J., Lemieux, L., Ma, J., Georgiou, C., Fetter, J., Shapleigh, J., Tecklenburg, M. M. J., Babcock, G. T., and Gennis, R. B. (1993). J. Bioenerg. Biomembr. 25, 121-136.

    PubMed  Google Scholar 

  • Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995). Nature 376, 660-669.

    PubMed  Google Scholar 

  • Kent, T. A., Young, L. J., Palmer, G., Fee, J. A., and Münck, E. (1983). J. Biol. Chem. 258, 8543-8546.

    PubMed  Google Scholar 

  • Little, R. H., Cheesman, M. R., Thomson, A. J., Greenwood, C., and Watmough, N. J. (1996). Biochemistry 35, 13780-13787.

    PubMed  Google Scholar 

  • Mitchell, P. (1987). FEBS Lett. 222, 235-245.

    PubMed  Google Scholar 

  • Mitchell, R., Brown, S., Mitchell, P., and Rich, P. R. (1992). Biochim. Biophys. Acta 1100, 40-48.

    PubMed  Google Scholar 

  • Moody, A. J. (1997). Biochim. Biophys. Acta 1276, 6-20.

    Google Scholar 

  • Moody, A. J., and Rich, P. R. (1994). Eur. J. Biochem. 226, 731-737.

    PubMed  Google Scholar 

  • Moody, A. J., Cooper, C. E., and Rich, P. R. (1991). Biochim. Biophys. Acta 1059, 189-207.

    PubMed  Google Scholar 

  • Moody, A. J., Cooper, C. E., Gennis, R. B., Rumbley, J. N., and Rich, P. N. (1995). Biochemistry 34, 6838-684.

    PubMed  Google Scholar 

  • Moody, A. J., Mitchell, R., Jeal, A. E., and Rich, P. R. (1997). Biochem. J. 324, 743-752.

    PubMed  Google Scholar 

  • Moody, A. J., Butler, C. S., Watmough, N. J., Thomson, A. J. and Rich, P. R. (1998). The reaction of halides with pulsed cytochrome bo from Escherichia coli. Biochem. J. in press.

  • Morgan, J. E., Verkhovsky, M. I., Puustinen, A., and Wikstöm, M. (1995). Biochemistry 34, 15633-15637.

    PubMed  Google Scholar 

  • Morgan, J. E., Verkhovsky, M. I., and Wikström, M. (1996). Biochemistry 35, 12235-12240.

    PubMed  Google Scholar 

  • Moss, T. H., Shapiro, E., King, T. E., Beinert, H., and Hartzell, C. (1978). J. Biol. Chem. 253, 8072-8073.

    PubMed  Google Scholar 

  • Palmer, G., Baker, G. M., and Noguchi, M. (1988). Chem. Scr. 28A, 41-46.

    Google Scholar 

  • Puustinen, A., Morgan, J. E., Verkhovsky, M., Thomas, J. W., Gennis, R. B., and Wikström, M. (1992). Biochemistry 31, 10363-10369.

    PubMed  Google Scholar 

  • Puustinen, A., Verkhovsky, M. I., Morgan, J. E., Belevich, N. P., and Wikström, M. (1996). Proc. Natl. Acad. Sci. USA 93, 1545-1548.

    PubMed  Google Scholar 

  • Rodriguez-Lopez, J. N., Smith, A. T., and Thorneley, R. N. F. (1996). J. Bioinorg. Chem. 1, 136-142.

    Google Scholar 

  • Rusnak, F. M., Münck, E., Nitsche, C. I., Zimmerman, B. H., and Fee, J. A. (1987). J. Biol. Chem. 262, 16328-16332.

    PubMed  Google Scholar 

  • Saraste, M. (1990). Q. Rev. Biophys. 23, 331-366.

    PubMed  Google Scholar 

  • Sato-Watanabe, M., Mogi, T., Ogura, T., Kitagawa, T., Miyoshi, H., Iwamura, H., and Anraku, Y. (1994). J. Biol. Chem. 269, 28908-28912.

    PubMed  Google Scholar 

  • Stevens, T. H., Brudvig, G. W., Bocian, D. F., and Chan, S. I. (1979). Proc. Natl. Acad. Sci. USA 76, 3320-3324.

    PubMed  Google Scholar 

  • Svensson, M., and Nilsson, T. (1993). Biochemistry 32, 5442-5447.

    PubMed  Google Scholar 

  • Thomson, A. J., Eglinton, D. G., Hill, B. C., and Greenwood, C. (1982). Biochem. J. 207, 167-170.

    PubMed  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawah-Itoh, A., Nakashima, R., Yaono, R., and Yoshikawa, S. (1995). Science 269, 1069-1074.

    PubMed  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawah-Itoh, A., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996). Science 272, 1136-1144.

    PubMed  Google Scholar 

  • Tweedle, M. F., and Wilson, L. J. (1978). J. Biol. Chem. 253, 8065-8071.

    PubMed  Google Scholar 

  • van der Oost, J., deBoer, A. P. N., deGier, J.-W. L., Zumft, W. G., Stouthamer, A. H., and van Spanning, R. J. M. (1994). FEMS Microbiol. Lett. 121, 109.

    Google Scholar 

  • Van Gelder, B. F., and Beinert, H. (1969). Biochim. Biophys. Acta 189, 1-24.

    PubMed  Google Scholar 

  • Van Gelder, B. F., Orme-Johnson, W. H., Hansen, R. E., and Beinert, H. (1967). Proc. Natl. Acad. Sci. USA 58, 1073-1079.

    PubMed  Google Scholar 

  • Vygodina, T., and Konstantinov, A. (1989). Biochim. Biophys. Acta 973, 390-398.

    PubMed  Google Scholar 

  • Watmough, N. J., Cheesman, M. R., Gennis, R. B., Greenwood, C., and Thomson, A. J. (1993). FEBS Lett. 319, 151-154.

    PubMed  Google Scholar 

  • Watmough, N. J., Cheesman, M. R., Greenwood, C., and Thomson, A. J. (1994). Biochem. J. 300, 469-475.

    PubMed  Google Scholar 

  • Watmough, N. J., Katsonouri, A., Little, R., Osborne, J. P., Furlong-Nickels, E., Gennis, R. B., Brittain, T. and Greenwood, C. (1997). A conserved glutamic acid in helix VI of cytochrome bo 3 influences a key step in oxygen reduction. Biochemistry 36, 13736-13742.

    PubMed  Google Scholar 

  • Weng, L., and Baker, G. M. (1991). Biochemistry 30, 5727-5733.

    PubMed  Google Scholar 

  • Wikström, M. (1981). Proc. Natl. Acad. Sci. USA 78, 4051-4054.

    PubMed  Google Scholar 

  • Wilks, A., and Oritz de Montellano, P. R. (1993). J. Biol. Chem. 268, 22357-22362.

    PubMed  Google Scholar 

  • Wrigglesworth, J. M. (1984). Biochem. J. 217, 715-719.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watmough, N.J., Cheesman, M.R., Butler, C.S. et al. The Dinuclear Center of Cytochrome bo 3 from Escherichia coli . J Bioenerg Biomembr 30, 55–62 (1998). https://doi.org/10.1023/A:1020507511285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020507511285

Navigation