Skip to main content
Log in

Bases in Sobolev Spaces on Bounded Domains with Lipschitzian Boundary

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In the Sobolev space \(W_p^k (\Omega )\), where Ω is a bounded domain in ℝn with a Lipschitzian boundary, for an arbitrarily given \(m \in \mathbb{N}\), we construct a basis such that the error of approximation of a function \(W_p^k (\Omega )\) the Nth partial sum of its expansion with respect to this basis can be estimated in terms of the modulus of smoothness \(\omega m(D^k f,N^{ - 1/n} )_{L_p (\Omega )} \) of order \(m\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Z. Ciesielski and T. Figiel, “Spline bases in classical function spaces on compact C manifolds. I,” Studia Math., 76 (1983), no. 1, 1-58, “II,” Studia Math., 76 (1983), no. 2, 95-136.

    Google Scholar 

  2. Z. Ciesielski, “Bases and K-functionals for the Sobolev spaces over compact manifolds of class C ,” Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.], 164 (1983), 197-203.

    Google Scholar 

  3. O. V. Matveev, “Spline-interpolation of functions in several variables and bases in Sobolev spaces,” Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.], 198 (1992), 125-152.

    Google Scholar 

  4. Yu. N. Subbotin, “Spline-interpolation and smooth bases in C[0, 2?],” Mat. Zametki [Math. Notes], 12 (1972), no. 1, 43-51.

    Google Scholar 

  5. O. V. Matveev, “Interpolation by D m-splines and bases in Sobolev spaces,” Mat. Sb. [Russian Acad. Sci. Sb. Math.], 189 (1998), no. 11, 75-102.

    Google Scholar 

  6. I. Ya. Novikov, Wavelet Bases in Functional Spaces [in Russian], Doctorate thesis in the physico-mathematical sciences, Voronezh State University, Voronezh, 2000.

    Google Scholar 

  7. A. Cohen, W. Dahmen, and R. De Vore, “Multiscale decompositions on bounded domains,” Trans. Amer. Math. Soc., 352 (2000), no. 8, 3651-3685.

    Google Scholar 

  8. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.

    Google Scholar 

  9. O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow, 1975.

    Google Scholar 

  10. S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics [in Russian], Nauka, Moscow, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveev, O.V. Bases in Sobolev Spaces on Bounded Domains with Lipschitzian Boundary. Mathematical Notes 72, 373–382 (2002). https://doi.org/10.1023/A:1020503505540

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020503505540

Navigation