Skip to main content
Log in

QSAR of Ecotoxicological Data on the Basis of Data-Driven If-Then-Rules

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

A rather small data matrix of seven chemicals and 17 different ecotoxicological end points is examined by methods of Discrete Mathematics. Especially, the lattice theory and its variant, the Formal Concept Analysis may be an attractive tool to analyze Quantitative Structure Activity Relationships, when a numerical functional approach is not at hand. The central item is the so called concept, which is a pair of subsets: A subset of molecules and a subset of properties which correspond to each other. The concepts are partially ordered due to a subset relation. From this subset relation, if–then-rules are derived, which aim to relate the structure of molecules with their ecotoxicological properties. For example, the following chemical rule is found: Cl ⇒ (2A,2C,2M). That means, all substances considered here having a “–Cl” as structural code have a medium ecotoxicological effect on Daphnia magna , Orconectes immunisare (Crustacea) and on Photobacterium phosphoreum , at least within the training set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartel, H.-G. (1996). Mathematische Methoden in der Chemie . Heidelberg, Beslini, Oxford: Spektrum.

    Google Scholar 

  • Bartel, H.-G. and Brüggemann, R. (1998). Application of formal concept analysis to structure-activity relationships. Fresenius J. Anal. Chem. 361 , 23–8.

    Google Scholar 

  • Birkhoff, G. (1984). Lattice Theory . Vol. 25. Providence, Rhode Island: American Mathematical Society.

    Google Scholar 

  • Brüggemann, R., Pudenz, S., Carlsen, L., Sørensen, P.B., Thomson, M. and Mishra, R.K. (2000). The use of Hasse diagrams as a potential approach for inverse QSAR. SAR QSAR Environ. Res. 11 (5–6), 1–15.

    Google Scholar 

  • Brüggemann, R., Pudenz, S. and Bartel, H.-G. (1999). Rule generation by means of lattice theory. In G.C. Gini and A.R. Katritzky (eds). Predictive Toxicology of Chemicals: Experiences and Impact of AI Tools . Papers from the 1999 AAAI Symposium, Menlo Park. California: AAAI Press.

    Google Scholar 

  • Brüggemann, R., Voigt, K. and Steinberg, C. (1997). Application of formal concept analysis to evaluate environmental databases. Chemosphere 35 , 479–86.

    Google Scholar 

  • Brüggemann, R. and Bartel, H.-G. (1999). A theoretical concept to rank environmentally significant chemicals. J. Chem. Inform. Comput. Sci. 39 , 211–7.

    Google Scholar 

  • Carlsen, L., Sørensen, P.B. and Thomsen, M. (2000). Estimation of octanol-water distribution coefficients—using partial order technique. In P.B. Sørensen, L. Carlsen, B.B. Mogensen, R. Brüggemann, B. Luther, S. Pudenz, U. Simon, E. Halfon, T. Bittner, K. Voigt, G. Welzl and F. Rediske (eds). Order Theoretical Tools in Environmental Sciences, Proceedings of the Second Workshop, 21 October 1999, Roskilde, Denmark . pp. 105–15. Roskilde: National Environmental Research Institute.

    Google Scholar 

  • Davey, B.A. and Priestley, H.A. (1990). Introduction to Lattices and Order . Cambridge: Cambridge University Press.

    Google Scholar 

  • Devillers, J., Thioulouse, J. and Karcher, W. (1993). Chemometrical evaluation of multispecies-multichemical data by means of graphical techniques combined with multivariate analyses. Ecotoxicol. Environ. Safety 26 , 333–45.

    Google Scholar 

  • Ganter, B. and Wille, R. (eds) (1996). Formale Begriffsanalyse—Mathematische Grundlagen. Berlin: Springer-Verlag.

    Google Scholar 

  • Gasteiger, J. and Zupan, J. (1993). Neural networks in chemistry. Angewa. Chemie. Int. Ed. Engl. 32 , 503–27.

    Google Scholar 

  • Kearsley, S.K., Sallamack, S., Fluder, E.F., Andose, J.D., Mosley, R.T. and Sheridan, R.P. (1996). Chemical similarity using physicochemical property descriptors. J. Chem. Inform. Comput. Sci. 36 , 118–27.

    Google Scholar 

  • Kubinyi, H. (1993). QSAR: Hansch Analysis and Related Approaches, Methods and Principles in Medicinal Chemistry . Weinheim: VCH-Verlagsgesellschaft.

    Google Scholar 

  • Simon, V., Gasteiger, J. and Zupan, J. (1993). A combined application of two different neural network types for the prediction of chemical reactivity. J. Am. Chem. Soc. 115 , 9148–59.

    Google Scholar 

  • Welzl, G., Voigt, K. and Rediske, G. (1999). Visualisation of environmental pollution—Hasse diagram technique and explorative statistical methods. In R. Brüggemann, J. Grell, U. Simon and S. Pudenz (eds). Proceedings of the Workshop on Order Theoretical Tools in Environmental Sciences , 16 November 1998. Berlin: Berichte des IGB, Heft 6, Sonderheft 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Pudenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pudenz, S., Brüggemann, R. & Bartel, HG. QSAR of Ecotoxicological Data on the Basis of Data-Driven If-Then-Rules. Ecotoxicology 11, 337–342 (2002). https://doi.org/10.1023/A:1020501204807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020501204807

Navigation