Skip to main content
Log in

The Road from Molecules to Onsager

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Our starting point consists of the microscopic dynamical equations of motion for the molecules, either classical or quantum mechanical. Subsequently the repeated randomness assumption is introduced, which breaks the time symmetry and produces the mesoscopic description in the form of a master equation for the probability distribution. Thereafter an expansion in the reciprocal system size leads to a macroscopic description, which may take one of two forms. Either it takes the form of a (nonlinear) deterministic rate equation for the macroscopic variables, tending to an equilibrium state; in this case the linearization around equilibrium produces the familiar Onsager reciprocal relations. Or it takes the form of a Fokker–Planck equation for the same variables; in that case a second expansion, this time in the temperature, leads to a nonlinear rate equation plus a dissipative term. The latter constitutes a nonlinear version of the Onsager equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Onsager, Phys. Rev. 37:405 and 38:2265 (1931). H. B. G. Casimir, Rev. Mod. Phys. 17:343 (1945). S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    Google Scholar 

  2. R. Benguria and M. Kac, Phys. Rev. 46:1 (1981). H. Grabert, U. Weiss, and P. Talkner, Z. Phys. B 55:87 (1984). P. Mazur showed in Periodic Polytechnica, Ser. Chem. Eng. 41 (2) (1997) that Onsager came close.

    Google Scholar 

  3. N. G. van Kampen, Periodica Polytechnica, Ser. Chem. Eng. 41(2):157 (1997).

    Google Scholar 

  4. L. Boltzmann, Vorlesungen über Gastheorie (Barth, Leipzig, 1896 & 1898).

    Google Scholar 

  5. P. and T. Ehrenfest, Begriffliche Grundlagen der Statistischen Auffassung in der Mechanik, Encyklopädie der Mathematischen Wissenschaften IV, Vol. 32 (Teubner, Leipzig, 1912).

    Google Scholar 

  6. A. Nordsieck, W. E. Lamb, and G. E. Uhlenbeck, Physica 7:344 (1940).

    Google Scholar 

  7. H. A. Kramers, Physica 7:284 (1940). J. E. Moyal, J. Roy. Statist. Soc. B 11:150 (1949).

    Google Scholar 

  8. N. G. van Kampen, Can. J. Phys. 39:551 (1961).

    Google Scholar 

  9. L. van Hove, Physica 21:517 (1955); 23:441 (1957).

    Google Scholar 

  10. I. Müller, Z. Phys. 198:329 (1967). R. E. Nettleton, Phys. Fluids 2:256 (1959); 3:216 (1960).

    Google Scholar 

  11. N. G. van Kampen, Physica 20:603 (1954).

    Google Scholar 

  12. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, 2nd Ed. (North-Holland, 1992), Section XVII, 7.

  13. N. G. van Kampen, Phys. Lett. A 62:383 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kampen, N.G. The Road from Molecules to Onsager. Journal of Statistical Physics 109, 471–481 (2002). https://doi.org/10.1023/A:1020494010910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020494010910

Navigation