Skip to main content
Log in

Green–Kubo Expressions for a Granular Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The transport coefficients for a gas of smooth, inelastic hard spheres are obtained from the Boltzmann equation in the form of Green–Kubo relations. The associated time correlation functions are not simply those constructed from the fluxes of conserved densities. Instead, fluxes constructed from the reference local homogeneous distribution occur as well. The analysis exposes some complexities to be expected in the application of linear response methods to granular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. A. McLennan, Introduction to Nonequilibrium Statistical Mechanics (Prentice-Hall, New Jersey, 1989).

    Google Scholar 

  2. J. J. Brey, J. W. Dufty, and A. Santos, Dissipative Dynamics for Hard Spheres, J. Statist. Phys. 87:1051 (1997).

    Google Scholar 

  3. J. W. Dufty, Statistical mechanics, kinetic theory, and hydrodynamics for rapid granular flow, J. Phys.: Condens. Matter 12:A47 (2000).

    Google Scholar 

  4. J. J. Brey and D. Cubero, Hydrodynamic transport coefficients of granular gases, in Granular Gases, T. Pöschel and S. Luging, eds. (Springer, New York, 2001).

    Google Scholar 

  5. I. Goldhirsch, Granular gases-probing the boundaries of hydrodynamics, in Granular Gases, T. Pöschel and S. Luging, eds. (Springer, New York, 2001).

    Google Scholar 

  6. T. P. C. van Noije and M. H. Ernst, Kinetic theory of granular gases, in Granular Gases, T. Pöschel and S. Luging, eds. (Springer, New York, 2001).

    Google Scholar 

  7. J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos, Hydrodynamics for granular flow at low density, Phys. Rev. E 58:4638 (1998).

    Google Scholar 

  8. V. Garzo and J. Dufty, Dense fluid transport for inelastic hard spheres, Phys. Rev. E 59:5895 (1999).

    Google Scholar 

  9. V. Garzo and J. Dufty, Hydrodynamics for a granular mixture at low density, Phys. Fluids 14:1476 (2002); cond-mat/0105395 v1.

    Google Scholar 

  10. I. Goldhirsch and T. P. C. van Noije, Green-Kubo relations for granular fluids, Phys. Rev. E 61:3241 (2000).

    Google Scholar 

  11. J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, Homogeneous cooling state of a low-density granular flow, Phys. Rev. E 54:3664 (1997).

    Google Scholar 

  12. T. P. C. van Noije and M. H. Ernst, Velocity distributions in homogeneous granular fluids: The free and heated case, Granular Matter 1:57 (1998).

    Google Scholar 

  13. J. W. Dufty, J. J. Brey, and J. F. Lutsko, Diffusion in a granular fluid-theory, Phys. Rev. E 65:051303 (2002).

    Google Scholar 

  14. J. W. Dufty and V. Garzo, Mobility and diffusion in granular flow, J. Statist. Phys. 105:723 (2001).

    Google Scholar 

  15. J. F. Lutsko, J. J. Brey, and J. W. Dufty, Diffusion in a granular fluid-simulation, Phys. Rev. E 65:051304 (2002).

    Google Scholar 

  16. J. W. Dufty, ed., Kinetic Theory and Hydrodynamics for a Low Density Gas, Advances in Complex Systems, Vol.4 (2001), p.397; cond-mat/0109215.

  17. J. R. Dorfman and H. van Beijeren, The kinetic theory of gases, in Statistical Mechanics, Part B, B. Berne, ed. (Plenum Press, New York, 1977).

    Google Scholar 

  18. J. J. Brey, J. W. Dufty, and A. Santos, Kinetic models for granular flow, J. Statist. Phys. 97:281 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufty, J.W., Brey, J.J. Green–Kubo Expressions for a Granular Gas. Journal of Statistical Physics 109, 433–448 (2002). https://doi.org/10.1023/A:1020489910002

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020489910002

Navigation