Skip to main content
Log in

Polyethylene Glycol-Diacyllipid Micelles Demonstrate Increased Accumulation in Subcutaneous Tumors in Mice

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this work is to study the potential of micelles prepared from amphiphilic polyethelene glycol/phosphatidyl- ethanolamine (PEG-PE) conjugates as a particulate drug delivery system capable of accumulation in tumors via the enhanced permeability and retention (EPR) effect.

Methods. Micelles were prepared from PEGs of different molecular lengths conjugated with PE. The micelles were characterized by fluorescence-based critical micellization concentration (CMC) measurements, dynamic light scattering, and HPLC. Blood clearance and tumor accumulation of 111In-labeled micelles were studied in mice with subcutaneously established Lewis lung carcinoma (LLC) and EL4 T lymphoma (EL4) tumors.

Results. Various versions of PEG-PE conjugates with PEG blocks ranging from 750 to 5000 Da formed very stable low CMC micelles at all concentrations down to 10−5 M. The size of the micelles varied between 7 and 35 nm depending on the length of the PEG block. Micelles remained intact after prolonged incubation with the blood serum. Upon intravenous administration into mice, the micelles demonstrated circulation longevity, and they efficiently and selectively accumulated in both subcutaneous Lewis lung carcinoma and EL4 T lymphoma tumors.

Conclusions. PEG-PE conjugates form very stable, long-circulating micelles. These micelles efficiently accumulate in tumors in vivo and may potentially be used as a tumor-specific delivery system for poorly soluble anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. P. Torchilin. Structure and design of polymeric surfactantbased drug delivery systems. J.Control.Release 73:137-172 (2001).

    Google Scholar 

  2. J. H. Senior. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit.Rev.Ther.Drug Carrier Syst. 3:123-193 (1987).

    Google Scholar 

  3. V. P. Torchilin and V. S. Trubetskoy. Which polymers can make nanoparticulate drug carriers long-circulating? Adv.Drug Deliv.Rev. 16:141-155 (1995).

    Google Scholar 

  4. D. D. Lasic and F. Martin. Stealth liposomes. CRC Press, Boca Raton, Florida 1995.

    Google Scholar 

  5. A. L. Klibanov, K. Maruyama, V. P. Torchilin, and L. Huang. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268:235-237 (1990).

    Google Scholar 

  6. V. P. Torchilin, V. G. Omelyanenko, M. I. Papisov, A. A. Bogdanov, Jr., V. S. Trubetskoy, J. N. Herron, and C. A. Gentry. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim.Biophys.Acta 1195:11-20 (1994).

    Google Scholar 

  7. V. P. Torchilin, M. I. Shtilman, V. S. Trubetskoy, K. Whiteman, and A. M. Milstein. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochim.Biophys.Acta 1195:181-184 (1994).

    Google Scholar 

  8. T. N. Palmer, V. J. Caride, M. A. Caldecourt, J. Twickler, and V. Abdullah. The mechanism of liposome accumulation in infarction. Biochim.Biophys.Acta 797:363-368 (1984).

    Google Scholar 

  9. A. A. Gabizon. Liposome circulation time and tumor targeting: implications for cancer therapy. Adv.Drug Deliv.Rev. 16: 285-294 (1995).

    Google Scholar 

  10. F. Yuan, M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, and R. K. Jain. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54:3352-3356 (1994).

    Google Scholar 

  11. F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55:3752-3756 (1995).

    Google Scholar 

  12. S. K. Hobbs, W. L. Monsky, F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin, and R. K. Jain. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc.Natl.Acad.Sci.USA 95:4607-4612 (1998).

    Google Scholar 

  13. W. L. Monsky, D. Fukumura, T. Gohongi, M. Ancukiewcz, H. A. Weich, V. P. Torchilin, F. Yuan, and R. K. Jain. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 59:4129-4135 (1999).

    Google Scholar 

  14. G. S. Kwon, S. Suwa, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxideaspartate) block copolymers-andriamycin conjugates. J.Control.Release 29:17-23 (1994).

    Google Scholar 

  15. V. Weissig, K. R. Whiteman, and V. P. Torchilin. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm.Res. 15:1552-1556 (1998).

    Google Scholar 

  16. V. S. Trubetskoy and V. P. Torchilin. Use of polyoxyethylenelipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv.Drug Deliv.Rev. 16:311-320 (1995).

    Google Scholar 

  17. G. S. Kwon. Diblock copolymer nanoparticles for drug delivery. Crit.Rev.Ther.Drug Carrier Syst. 15:481-512 (1998).

    Google Scholar 

  18. V. P. Torchilin and V. Weissig. Polymeric micelles for delivery of poorly soluble drugs. Polym.Prepr. 40:320-321 (1999).

    Google Scholar 

  19. V. Weissig, C. Lizano, and V. P. Torchilin. Micellar delivery system for dequalinium-a liphophilic cationic drug with anticarcinoma activity. J.Liposome Res. 8:391-400 (1998).

    Google Scholar 

  20. S. B. La, T. Okano, and K. Kataoka. Preparation and characterization of the micelle-forming polymeric drug indomethacinincorporated poly(ethylene oxide)-poly(betabenzyl L-aspartate) block copolymer micelles. J.Pharm.Sci. 85:85-90 (1996).

    Google Scholar 

  21. C. Allen, Y. Yu, D. Maysinger, and A. Eisenberg. Polycaprolactone-b-poly(ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818. Bioconjug.Chem. 9:564-572 (1998).

    Google Scholar 

  22. R. Smith and C. Tanford. The critical micelle concentration of L-α-dipalmitoylphosphatidylcholine in water and watermethanol solutions. J.Mol.Biol. 67:75-83 (1972).

    Google Scholar 

  23. D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K. D. Lee, M. C. Woodle, D. D. Lasic, C. Redemann, and F. J. Martin. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc.Natl.Acad.Sci.USA 88:11460-11464 (1991).

    Google Scholar 

  24. M. J. Parr, D. Masin, P. R. Cullis, and M. B. Bally. Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis lung carcinoma: the lack of beneficial effects by coating liposomes with poly(ethylene glycol). J.Pharmacol.Exp.Ther. 280:1319-1327 (1997).

    Google Scholar 

  25. Z. Gao, A. N. Lukyanov, A. Singal, and V. Torchilin. Diacyllipidpolymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Letters. In press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukyanov, A.N., Gao, Z., Mazzola, L. et al. Polyethylene Glycol-Diacyllipid Micelles Demonstrate Increased Accumulation in Subcutaneous Tumors in Mice. Pharm Res 19, 1424–1429 (2002). https://doi.org/10.1023/A:1020488012264

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020488012264

Navigation