Skip to main content
Log in

Chloride and calcium in Photosystem II: from effects to enigma*

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This minireview focuses on the early evidence for roles of chloride and calcium ions in reactions of photosynthetic electron transport and on the reluctance with which an essential function of these inorganic ions in the process of water oxidation was accepted. For example, Daniel Arnon's group initially refuted the conclusion of Otto Warburg, the discoverer of a ‘chloride effect,’ that chloride was a ‘coenzyme.’ Their reasoning was that chloride had not been shown to be an essential mineral nutrient of plants. In the case of calcium, the problem was that the first ‘calcium effects’ had been seen with preparations from cyanobacteria rather than from green plants. While today the status of calcium and chloride as essential participants in the process of water oxidation is rarely disputed, the nature of their involvement still eludes all experimental inquiries. Substantial progress in this respect may come from recent refinements of the application of Fourier-transform infrared spectroscopy to the study of photosynthetic water oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon DI and Whatley FR (1949a) Is chloride a coenzyme of photosynthesis? Science 110: 554–556

    PubMed  CAS  Google Scholar 

  • Arnon DI and Whatley FR (1949b) Factors influencing oxygen production by illuminated chloroplast fragments. Arch Biochem Biophys 23: 141–156

    CAS  Google Scholar 

  • Barr R, Troxel KS and Crane FL (1983) A calcium-selective site in Photosystem II of spinach chloroplasts. Plant Physiol 73: 309–315

    PubMed  CAS  Google Scholar 

  • Berthold DA, Babcock GT and Yocum CF (1981) A highly resolved oxygen-evolving Photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134: 231–234

    Article  CAS  Google Scholar 

  • Boussac A and Rutherford AW (1992) The involvement of Ca2+ in the Ca2+-effect on Photosystem-II oxygen evolution. Photosynth Res 32: 207–209

    Article  CAS  Google Scholar 

  • Bové JM, Bové C, Whatley FR and Arnon DI (1963) Chloride requirement for oxygen evolution in photosynthesis. Z Naturforsch 18b: 683–688

    Google Scholar 

  • Brand JJ (1979) The effect of Ca2+ on oxygen evolution in membrane preparations from Anacystis nidulans. FEBS Lett 103: 114–117

    Article  CAS  Google Scholar 

  • Burk D (1953) Otto Warburg, artisan of cell chemistry. In: Burk D (ed) Cell Chemistry. A Collection of Papers Dedicated to Otto Warburg on the Occasion of his 70th Birthday. pp 9–14. Elsevier, Amsterdam

    Google Scholar 

  • Cammarata KV and Cheniae GM (1987) Studies on 17,24 kD depleted Photosystem II membranes. Plant Physiol 84: 587–595

    PubMed  CAS  Google Scholar 

  • Coleman WJ and Govindjee (1987) A model for the mechanism of chloride activation of oxygen evolution in Photosystem II. Photosynth Res 13: 199–223

    Article  CAS  Google Scholar 

  • Critchley C (1985) The role of chloride in Photosystem II. Biochim Biophys Acta 811: 33–46

    CAS  Google Scholar 

  • Critchley C, Baianu IC, Govindjee and Gutkowski HS (1982) The role of chloride in O2 evolution by thylakoids from salt-tolerant higher plants. Biochim Biophys Acta 682: 436–445

    Article  CAS  Google Scholar 

  • Davis DJ and Gross EL (1975) Protein-protein interactions of the light-harvesting chlorophyll a/b protein. I. Ca2+ binding and its relation to protein association. Biochim Biophys Acta 387: 557–567

    Article  PubMed  CAS  Google Scholar 

  • Fredricks WW and Jagendorf AT (1964) A soluble component of the Hill reaction in Anacystis nidulans. Arch Biochem Biophys 104: 30–49

    Google Scholar 

  • Gaffron H (1960) Energy storage: Photosynthesis. In: Steward FC (ed) Plant Physiology. A Treatise, Vol 1B, pp 3–277. Academic Press, New York

    Google Scholar 

  • Ghanotakis DF, Babcock GT and Yocum CF (1984) Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted Photosystem II preparations. FEBS Lett 167: 127–130

    Article  CAS  Google Scholar 

  • Gorham PR and Clendenning KA (1952) Anionic stimulation of the Hill reaction in isolated chloroplasts. Arch Biochem Biophys 37: 109–223

    Article  Google Scholar 

  • Han K-C and Katoh S (1993) Different localization of two Ca2+ in spinach oxygen evolving Photosystem II membranes. Evidence for involvement of only one Ca2+ in oxygen evolution. Plant Cell Physiol 34: 585–593

    CAS  Google Scholar 

  • Hillier W and Babcock GT (2001) S-state dependent Fourier transform infrared difference spectra for the Photosystem II oxygen evolving complex. Biochemistry 40: 1503–1509

    Article  PubMed  CAS  Google Scholar 

  • Hind G, Nakatani HY and Izawa S (1969) The role of Cl? in photosynthesis. I. The Cl? requirement of electron transport. Biochim Biophys Acta 172: 277–289

    Article  PubMed  CAS  Google Scholar 

  • Homann PH, Johnson JD and Pfister VR (1983) Interactions of protons with Photosystem II. In: Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K (eds) The Oxygen Evolving System of Photosynthesis, pp 283–292. Academic Press, Tokyo

    Google Scholar 

  • Izawa S, Heath RL and Hind G (1969) The role of Cl? in photosynthesis. III. The effect of artificial e-donors upon electron transport. Biochim Biophys Acta 180: 388–398

    Article  PubMed  CAS  Google Scholar 

  • Kashino Y, Satoh K and Katoh S (1986) A simple procedure to determine Ca2+ in oxygen evolving preparations from Synechococcus sp. FEBS Lett 205: 150–154

    Article  CAS  Google Scholar 

  • Kelley PM and Izawa S (1979) The role of chloride ion in Photosystem II. Biophys J 25: 50a

    Google Scholar 

  • Kok B, Forbush B and McGloin MP (1970) Cooperation of charges in photoynthesis in photosynthetic O2 evolution. A linear four step mechanism. Photochem Photobiol 11: 457–475

    PubMed  CAS  Google Scholar 

  • Krebs H (1979) Otto Warburg. Wissenschaftliche Verlags Gesellschaft, Stuttgart.

    Google Scholar 

  • Krieger A and Weis E (1993) The role of calcium in the pH-dependent control of Photosystem II. Photosynth Res 37: 117–130

    Article  CAS  Google Scholar 

  • Krieger A, Weis E and Demeter S (1993) Low-pH-induced Ca2+ ion release in the water-splitting system is accompanied by a shift in the midpoint redox potential of the primary quinone acceptor QA. Biochim Biophys Acta 1144: 411–418

    Article  CAS  Google Scholar 

  • Lindberg K, Vånngård T and Andréasson LE (1993) Studies of the slowly exchanging chloride in Photosystem II. Photosynth Res 38: 401–408

    Article  CAS  Google Scholar 

  • Lipman CB (1938) Importance of silicon, aluminum and chlorine for higher plants. Soil Sci 45: 189–198

    Article  CAS  Google Scholar 

  • Losada M, Whatley FR and Arnon DI (1961) Separation of the two light reactions in noncyclic photo-phosphorylation of green plants. Nature 190: 606–610

    Article  PubMed  CAS  Google Scholar 

  • Martin G and Lavollay J (1958) Le chlore, oligo-élément indispensable pour Lemna minor. Experientia 14: 333–334

    Article  CAS  Google Scholar 

  • Miyao M and Murata N (1984a) Calcium ions can be substituted for the 24 kDa polypeptide in photosynthetic oxygen evolution. FEBS Lett 168: 118–120

    Article  CAS  Google Scholar 

  • Miyao M and Murata N (1984b) Role of the 33 kDa polypeptide in preserving Mn in the photosynthetic oxygen evolution. FEBS Lett 170: 350–354

    Article  CAS  Google Scholar 

  • Muallem A and Izawa S (1980) Inactivation of the O2 evolving mechanism by exogenous Mn2+ in Cl?-depleted chloroplasts. FEBS Lett 115: 49–53

    Article  CAS  Google Scholar 

  • Muallem A and Lainé-Böszörmenyi (1981) The role of chloride anions in delayed luminescence of chloroplasts. Photobiochem Photobiophys 2: 337–345

    CAS  Google Scholar 

  • Noguchi T and Sugiura M (2001) Flash induced Fourier infrared detection of the structural changes during the S-state cycle of the oxygen evolving complex in Photosystem II. Biochemistry 40: 1497–1502

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Ono T-A and Inoue Y (1995) Direct detection of a carboxylate bridge between Mn and Ca2+ in the photosynthetic oxygen-evolving center by means of Fourier transform infrared spectroscopy. Biochim Biophys Acta 1228: 189–200

    Article  Google Scholar 

  • Nugent J (ed) (2001) Photosynthetic Water Oxidation. Biochim Biophys Acta 1503: 1–259 (special issue)

  • Ono T-A and Inoue Y (1988) Discrete extraction of the Ca-atom functional for O2 evolution in higher plant Photosystem II by a simple low pH treatment. FEBS Lett 227: 147–152

    Article  CAS  Google Scholar 

  • Ort DR and Yocum CF (eds) (1996) Oxygenic Photosynthesis: the Light Reactions. Kluwer Academic, Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Piccioni RG and Mauzerall DC (1976) Increase effected by calcium ion in the rate of oxygen evolution from preparations of Phormidium luridum. Biochim Biophys Acta 423: 605–609

    Article  PubMed  CAS  Google Scholar 

  • Punnett T (1959) Stability of isolated chloroplast preparations and its effect on the Hill reaction. Plant Physiol 34: 283–289

    Article  PubMed  CAS  Google Scholar 

  • Rashid A and Homann PH (1992) Properties of iodide-activated photosynthetic water-oxidizing complexes. Biochim Biophys Acta 1101: 303–310

    Article  CAS  Google Scholar 

  • Rutherford AW (1989) Photosystem II, the water-splitting enzyme. Trends Biochem Sci 14: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Sinclair J (1984) The influence of anions on oxygen evolution by isolated chloroplasts. Biochim Biophys Acta 764: 247–252

    Article  CAS  Google Scholar 

  • Sivaraja M, Tso J and Dismukes GC (1989) A calcium-specific site influences the structure and activity of the manganese cluster responsible for photosynthetic water oxidation. Biochemistry 28: 9459–9464

    Article  PubMed  CAS  Google Scholar 

  • Theg SM and Homann PH (1982) Light-, pH-and uncouplerdependent association of chloride with chloroplast thylakoids. Biochim Biophys Acta 679: 221–234

    Article  CAS  Google Scholar 

  • Warburg O and Lüttgens W (1944) Weitere Experimente zur Kohlensäureassimilation. Naturwiss 40: 301

    Article  Google Scholar 

  • Warburg O and Lüttgens W (1946) Fotokhimicheskoye vostanovlenye khinona v zelenykh granulakh. [Photochemical reduction of quinone in green granules.] Biokhimiya 11: 301–322

    Google Scholar 

  • Wincencjusz H, van Gorkom HJ and Yocum CF (1997) The photosynthetic oxygen evolving complex requires chloride for its redox state S2 ? S3 and S3 ? S0 transitions but not for S0 ?S1 and S1 ?S2 transitions. Biochemistry 36: 3663–3670

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T and Tomita G (1975) Comparative study of the reactivation of oxygen evolution in chloroplasts inhibited by various treatments. Plant Cell Physiol 16: 283–296

    CAS  Google Scholar 

  • Yerkes CT and Babcock GT (1984) Surface charge asymmetry and a specific calcium ion effect in chloroplast Photosystem II. Biochim Biophys Acta 634: 19–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I dedicate this minireview to the memory of George Cheniae (1928–2001), my college for almost 40 years, whose excellance as a scientist and fairness have been an inspiration, whose critical mind I admired, whose wit I enjoyed, and whose friendship I cherished.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homann, P.H. Chloride and calcium in Photosystem II: from effects to enigma* . Photosynthesis Research 73, 169–175 (2002). https://doi.org/10.1023/A:1020486729283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020486729283

Navigation