Skip to main content
Log in

Long-Time Tails, Weak Localization, and Classical and Quantum Critical Behavior

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An overview is given of the long-time and long-distance behavior of correlation functions in both classical and quantum statistical mechanics. After a simple derivation of the classical long-time tails in equilibrium time correlation functions, we discuss analogous long-distance phenomena in nonequilibrium classical systems. The paper then draws analogies between these phenomena and similar effects in quantum statistical mechanics, with emphasis on the soft modes that underly long-time tails and related phenomena. We also elucidate the interplay between critical phenomena and long-time tails, using the classical liquid-gas critical point and the quantum ferromagnetic transition as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. J. Alder and T. E. Wainwright, Phys. Rev. A 1:18 (1970).

    Google Scholar 

  2. J. R. Dorfman and E. G. D. Cohen, Phys. Rev. Lett. 25:1257 (1970).

    Google Scholar 

  3. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. Lett. 25:1254 (1970).

    Google Scholar 

  4. W. W. Wood and J. J. Erpenbeck, Annu. Rev. Phys. Chem. 27:331 (1975).

    Google Scholar 

  5. J. R. Dorfman, Physica A 106:77 (1981).

    Google Scholar 

  6. J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45:213 (1994).

    Google Scholar 

  7. D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16:732 (1977), and references therein.

    Google Scholar 

  8. See, e.g., J. P. Boon and S. Yip, Molecular Hydrodynamics (Dover, New York, 1980).

    Google Scholar 

  9. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971).

    Google Scholar 

  10. M. E. Fisher, in Advanced Course on Critical Phenomena, F. W. Hahne, ed. (Springer, Berlin, 1983), p. 1.

    Google Scholar 

  11. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  12. S. Nagel, Rev. Mod. Phys. 64:321 (1992).

    Google Scholar 

  13. J. V. Sengers, in Critical Phenomena, NBS Miscellaneous Publ., M. S. Green and J. V. Sengers, eds. (U.S. Gov't Printing Office, Washington, DC, 1966).

    Google Scholar 

  14. M. Fixman, Adv. Chem. Phys. 6:175 (1964); J. Chem. Phys. 47:2808 (1967).

    Google Scholar 

  15. L. P. Kadanoff and J. Swift, Phys. Rev. 166:89 (1968).

    Google Scholar 

  16. K. Kawasaki, Phys. Rev. 150:291 (1966); Ann. Phys. 61:1 (1970).

    Google Scholar 

  17. Most of these developments in the theory of quantum many-body systems were put in a language that makes analogies to classical LTT effects far from obvious, although early work in this area did stress the connection with classical statistical mechanics, J. S. Langer and T. Neal, Phys. Rev. Lett. 16:984 (1966). Part of our motivation in the present paper is to elucidate the hidden close relation between these phenomena.

    Google Scholar 

  18. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42:673 (1979).

    Google Scholar 

  19. See, e.g., J. W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley, New York, 1988).

    Google Scholar 

  20. Historically,the term “weak localization”was first used for the transport properties ofnoninteracting disordered electrons in two-dimensions.It is now often used in the broadermeaning of LTT and GSI phenomena in fermion systems,with or without interactions,inany dimensionality.For reviews,see,P.A.Lee and T.V.Ramakrishnan,Rev.Mod.Phys.57 :287 (1985);B.L.Altshuler and A.G.Aronov,in Electron-Electron Interactions in Dis-ordered Systems ,M.Pollak and A.L.Efros,eds.(North-Holland,Amsterdam,1984),p.1.

  21. P. W. Anderson, Phys. Rev. 109:1492 (1958).

    Google Scholar 

  22. N. F. Mott, Metal-Insulator Transitions (Taylor & Francis, London, 1990).

    Google Scholar 

  23. D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66:261 (1994).

    Google Scholar 

  24. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  25. S. L. Sondhi, S. M. Girvin, and J. P. Carini, Rev. Mod. Phys. 69:315 (1997).

    Google Scholar 

  26. T. R. Kirkpatrick and D. Belitz, in Electron Correlation in the Solid State, N. H. March, ed. (Imperial College Press, London, 1999).

    Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959), ch. 17; D. Ronis, I. Procaccia, and J. Machta, Phys. Rev. A 22:714 (1980).

    Google Scholar 

  28. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961).

    Google Scholar 

  29. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, MA, 1975).

    Google Scholar 

  30. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15:7 (1976); ibid. 15:23 (1976).

    Google Scholar 

  31. K. Kawasaki, in Phase Transitions and Critical Phenomena, Vol. 5a, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976), p. 165.

    Google Scholar 

  32. G. F. Mazenko, S. Ramaswamy, and J. Toner, Phys. Rev. B 28:1618 (1983).

    Google Scholar 

  33. D. Forster, D. R. Nelson, and M. J. Stephen, Ref. 7.

  34. J. Luettner-Strathmann, J. V. Sengers, and G. A. Olchowy, J. Chem. Phys. 103:7482 (1995).

    Google Scholar 

  35. T. Imeada, A. Onuki, and K. Kawasaki, Progr. Theor. Phys. 71:16 (1984).

    Google Scholar 

  36. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26:950 (1982), ibid. 26:995 (1982).

    Google Scholar 

  37. R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 40:431 (1985)

    Google Scholar 

  38. J. M. Ortiz de Zarate, R. Perez Cordon, and J. V. Sengers, Physics A 291:113 (2001).

    Google Scholar 

  39. B. M. Law and J. V. Sengers, J. Stat. Phys. 57:531 (1989).

    Google Scholar 

  40. W. B. Li, P. N. Segré, R. W. Gammon, and J. V. Sengers, Physica A 204:399 (1994).

    Google Scholar 

  41. B. M. Law and J. C. Nieuwoudt, Phys. Rev. A 40:3880 (1989).

    Google Scholar 

  42. J. V. Sengers and J. M. Ortiz de Zárate, in Thermal Nonequilibrium Phenomena in Fluid Mixtures, W. Köhler and W. Wiegand, eds. (Springer, Berlin, 2001).

    Google Scholar 

  43. W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Phys. Rev. Lett. 81:5580 (1998); J. Chem. Phys. 112:9139 (2000).

    Google Scholar 

  44. T. Imeada, A. Onuki, and K. Kawasaki, Ref. 37; B. Schmittmann and R. K. P. Zia, in Phase Transitions and Critical Phenomena, Vol. 17, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1995).

    Google Scholar 

  45. See, e.g., D. Belitz, F. Evers, and T. R. Kirkpatrick, Phys. Rev. 58:9710 (1998).

    Google Scholar 

  46. See, e.g., G. Baym and C. Pethick, Landau Fermi-Liquid Theory (Wiley, New York, 1991).

    Google Scholar 

  47. F. Wegner, Z. Phys. B 35:207 (1979).

    Google Scholar 

  48. L. Schäfer and F. Wegner, Z. Phys. B 38:113 (1980).

    Google Scholar 

  49. D. Belitz and T. R. Kirkpatrick, Phys. Rev. B 56:6513 (1997).

    Google Scholar 

  50. L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitskii, Pis'ma Zh. Eksp. Teor. Fiz. 30:248 (1979) [JETP Lett. 30:228 (1979)].

    Google Scholar 

  51. B. L. Altshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. Lett. 44:1288 (1980).

    Google Scholar 

  52. See, e.g., E. H. Hauge, in Transport Phenomena, Lecture Notes in Physics No. 31, G. Kirczenow and J. Marro, eds. (Springer, New York, 1974), p. 337.

    Google Scholar 

  53. M. H. Ernst, J. Machta, H. van Beijeren, and J. R. Dorfman, J. Stat. Phys. 34:477 (1984).

    Google Scholar 

  54. P. Dai, Y. Zhang, and M. P. Sarachik, Phys. Rev. B 45:3984 (1992).

    Google Scholar 

  55. G. J. Dolan and D. D. Osheroff, Phys. Rev. Lett. 43:721 (1979).

    Google Scholar 

  56. T. R. Kirkpatrick and D. Belitz, J. Stat. Phys. 87:1307 (1997).

    Google Scholar 

  57. For noninteracting electrons, there is consensus that this statement is true. Until recently, it was also believed to be true for interacting electrons, but experiments showing an apparent metal-insulator transition in two-dimensional systems have cast doubt on this, see E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73:251 (2001). The correct explanation of these observations is still being debated.

    Google Scholar 

  58. T. R. Kirkpatrick and D. Belitz, Phys. Rev. B 53:14364 (1996).

    Google Scholar 

  59. D. Belitz, T. R. Kirkpatrick, and T. Vojta, cond-mat/0109547.

  60. D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. B 55:9452 (1997).

    Google Scholar 

  61. G. Y. Chitov and A. J. Millis, cond-mat/0103155.

  62. C. Pfleiderer, G. J. McMullan, S. R. Julian, and G. G. Lonzarich, Phys. Rev. 55:8330 (1997).

    Google Scholar 

  63. S. S. Saxena et al., Nature 406:587 (2000); A. Huxley et al., Phys. Rev. B 63:144519 (2001).

    Google Scholar 

  64. C. Pfleiderer et al., Nature 412:58 (2001).

    Google Scholar 

  65. See, K. G. Wilson and J. Kogut, Phys. Rep. 12:75 (1974) for the general philosophy underlying this approach. For the application to quantum phase transitions, see J. Hertz, ref. 68, and references therein.

    Google Scholar 

  66. J. Hertz, Phys. Rev. B 14:1165 (1976).

    Google Scholar 

  67. J. Hubbard, Phys. Rev. Lett. 3:77 (1959); R. L. Stratonovich, Dok. Akad. Nauk. SSSR 115:1907 (1957) [Sov. Phys. Dokl. 2:416 (1957)].

    Google Scholar 

  68. D. Belitz, T. R. Kirkpatrick, M. T. Mercaldo, and S. L. Sessions, Phys. Rev. B 63:174427 (2001); ibid. 63:174428 (2001).

    Google Scholar 

  69. D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. Lett. 82:4707 (1999).

    Google Scholar 

  70. T. Vojta, D. Belitz, T. R. Kirkpatrick, and R. Narayanan, Ann. Phys. (Leipzig) 8:593 (1999).

    Google Scholar 

  71. M. Yoshimura and T. R. Kirkpatrick, Phys. Rev. B 54:7109 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkpatrick, T.R., Belitz, D. & Sengers, J.V. Long-Time Tails, Weak Localization, and Classical and Quantum Critical Behavior. Journal of Statistical Physics 109, 373–405 (2002). https://doi.org/10.1023/A:1020485809093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020485809093

Navigation