Skip to main content
Log in

Escape-Rate Formalism, Decay to Steady States, and Divergences in the Entropy-Production Rate

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

According to thermodynamics the irreversible entropy production of diffusive relaxation processes diverges at the boundary to the vacuum, i.e., to a state of vanishing particle density. By means of a multibaker map we point out that this divergence is not present in the spatially discrete dynamics, which brings forth the evolution equations of irreversible thermodynamics in the continuum limit. In addition, we show that the irreversible entropy production of relaxation towards a nonempty steady state is proportional to the decay rate of the thermodynamic system subjected to absorbing boundary conditions. This generalizes results of the escape rate formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Gaspard and G. Nicolis, Phys. Rev. Lett. 65:1693 (1990).

    Google Scholar 

  2. J. R. Dorfman and P. Gaspard, Phys. Rev. E 51:28 (1995).

    Google Scholar 

  3. W. Breymann, T. Tél, and J. Vollmer, Phys. Rev. Lett. 77:2945 (1996).

    Google Scholar 

  4. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  5. J. W. Haus and K. W. Kehr, Phys. Rep. 150:263 (1987).

    Google Scholar 

  6. P. Brémaund, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, Vol. 31, Texts in Applied Mathematics (Springer, New York, 1999).

    Google Scholar 

  7. T. Tél, in Directions in Chaos: Experimental Study and Characterization of Chaos, H. Bai-lin, ed. (World Scientific, Singapore, 1990), Vol. 3, pp. 149–211.

    Google Scholar 

  8. E. Ott and T. Tél, Chaos 3:417 (1993).

    Google Scholar 

  9. T. Tél, in StatPhys 19, H. Bai-lin, ed. (World Scientific, Singapore, 1996), pp. 346–62.

    Google Scholar 

  10. P. Gaspard, Phys. Rev. E 53:4379 (1996).

    Google Scholar 

  11. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).

    Google Scholar 

  12. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Y. G. Sinai, Phys. Rev. Lett. 70:2209 (1993).

    Google Scholar 

  13. J. Vollmer, T. Tél, and W. Breymann, Phys. Rev. E 58:1672 (1998).

    Google Scholar 

  14. W. Breymann, T. Tél, and J. Vollmer, Chaos 8:396 (1998).

    Google Scholar 

  15. T. Tél and J. Vollmer, in Hard Ball Systems and the Lorentz Gas, D. Szász, ed. (Springer, Berlin, 2000), Vol. 101, Encyclopædia of Mathematical Sciences, pp. 367–420.

    Google Scholar 

  16. J. Vollmer, Physics Reports (2002), Habilitation Thesis, University Essen.

  17. J. Vollmer, T. Tél, and W. Breymann, Phys. Rev. Lett. 79:2759 (1997).

    Google Scholar 

  18. P. Gaspard, J. Stat. Phys. 68:673 (1992).

    Google Scholar 

  19. S. Tasaki and P. Gaspard, J. Stat. Phys. 81:935 (1995).

    Google Scholar 

  20. T. Tél, J. Vollmer, and W. Breymann, Europhys. Lett. 35:659 (1996); to be published.

    Google Scholar 

  21. P. Gaspard, J. Stat. Phys. 88:1215 (1997).

    Google Scholar 

  22. P. Gaspard, Phys. A 240:54 (1997).

    Google Scholar 

  23. T. Gilbert and J. R. Dorfman, J. Stat. Phys. 96:225 (1999).

    Google Scholar 

  24. S. Tasaki and P. Gaspard, Theoretical Chemistry Accounts 102:385 (1999).

    Google Scholar 

  25. E. Hopf, Ergodentheorie (Springer, Berlin, 1937).

    Google Scholar 

  26. L. Mátyás, T. Tél, and J. Vollmer, Phys. Rev. E 62:349 (2000), also available at arXiv:chao-dyn/9912034.

    Google Scholar 

  27. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).

    Google Scholar 

  28. P. Gaspard and J. R. Dorfman, Phys. Rev. E 52:3525 (1995).

    Google Scholar 

  29. Z. Kaufmann, H. Lustfeld, A. Németh, and P. Szépfalusy, Phys. Rev. Lett. 78:4031 (1997).

    Google Scholar 

  30. Z. Kaufmann, Phys. Rev. E 59:6552 (1999).

    Google Scholar 

  31. J. Liggett, Fluid Mechanics (McGraw-Hill, New-York, 1994).

    Google Scholar 

  32. T. Gilbert, J. R. Dorfman, and P. Gaspard, Phys. Rev. Lett. 85:1606 (2000).

    Google Scholar 

  33. T. Gilbert, J. R. Dorfman, and P. Gaspard, Nonlinearity 14:239 (2001).

    Google Scholar 

  34. P. Gaspard, I. Claus, T. Gilbert, and J. R. Dorfman, Phys. Rev. Lett. 86:1506 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollmer, J., Mátyás, L. & Tél, T. Escape-Rate Formalism, Decay to Steady States, and Divergences in the Entropy-Production Rate. Journal of Statistical Physics 109, 875–893 (2002). https://doi.org/10.1023/A:1020483103158

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020483103158

Navigation