Advertisement

Foundations of Physics

, Volume 32, Issue 10, pp 1557–1595 | Cite as

A Solid-State Maxwell Demon

  • D. P. Sheehan
  • A. R. Putnam
  • J. H. Wright
Article

Abstract

A laboratory-testable, solid-state Maxwell demon is proposed that utilizes the electric field energy of an open-gap p-n junction. Numerical results from a commercial semiconductor device simulator (Silvaco International–Atlas) verify primary results from a 1-D analytic model. Present day fabrication techniques appear adequate for laboratory tests of principle.

second law nonequilibrium thermodynamics nanotechnology Maxwell demon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. P. Sheehan, Phys. Plasmas 2, 1893 (1995).Google Scholar
  2. 2.
    D. P. Sheehan, Phys. Plasmas 3, 104 (1996).Google Scholar
  3. 3.
    D. P. Sheehan and J. D. Means, Phys. Plasmas 5, 2469 (1998).Google Scholar
  4. 4.
    D. P. Sheehan, Phys. Rev. E 57, 6660 (1998).Google Scholar
  5. 5.
    D. P. Sheehan, Phys. Lett. A 280, 185 (2001).Google Scholar
  6. 6.
    D. P. Sheehan, J. Glick, and J. D. Means, Found. Phys. 30, 1227 (2000).Google Scholar
  7. 7.
    D. P. Sheehan, J. Glick, T. Duncan, J. A. Langton, M. J. Gagliardi, and R. Tobe, Found. Phys. 32, 441 (2002).Google Scholar
  8. 8.
    D. P. Sheehan, J. Sci. Explor. 12, 303 (1998).Google Scholar
  9. 9.
    A. E. Allahverdyan and Th. M. Nieuwenhuizen, Phys. Rev. Lett. 85, 1799 (2000).Google Scholar
  10. 10.
    A. E. Allahverdyan and Th. M. Nieuwenhuizen, Phys. Rev. E (in press) (2002).Google Scholar
  11. 11.
    V. Capek and O. Frege, Czech. J. Phys. 50, 405 (2000).Google Scholar
  12. 12.
    V. Capek and T. Mancal, Europhys. Lett. 48, 365 (1999).Google Scholar
  13. 13.
    V. Capek, Phys. Rev. E 57, 3846 (1998).Google Scholar
  14. 14.
    V. Capek, J. Phys. A: Math. Gen 30, 5245 (1997).Google Scholar
  15. 15.
    V. Capek and D. P. Sheehan, Physica A 304, 461 (2002).Google Scholar
  16. 16.
    V. Capek and O. Frege, Czech. J. Phys. (in press) (2002).Google Scholar
  17. 17.
    L. G. M. Gordon, Found. Phys. 13, 989 (1983).Google Scholar
  18. 18.
    L. G. M. Gordon, Found. Phys. 11, 103 (1981).Google Scholar
  19. 19.
    A. V. Nikulov, Phys. Rev. B 64, 012505 (2001).Google Scholar
  20. 20.
    A. V. Nikulov and I. N. Zhilyaev, J. Low Temp. Phys. 112, 227 (1998).Google Scholar
  21. 21.
    V. Capek and D. P. Sheehan, “Challenges to the second law of thermodynamics,” in Fundamental Theories of Physics Series (Kluwer Academic, Dordrecht, due 2003).Google Scholar
  22. 22.
    First International Conference on Quantum Limits to the Second Law, San Diego, July 28-31, 2002.Google Scholar
  23. 23.
    J. C. Maxwell, letter to P. G. Tait. 11 December 1867, in Life and Work of Peter Guthrie Tait, C. G. Knott, ed. (Cambridge University Press, London, 1911), pp. 213–215.Google Scholar
  24. 24.
    J. C. Maxwell, Theory of Heat (Longmans Green, London, 1871), Chap. 12.Google Scholar
  25. 25.
    H. Whiting, Science 6, 83 (1885).Google Scholar
  26. 26.
    H. S. Leff and A. F. Rex, Maxwell's Demon Entropy, Information, Computing (Princeton University Press, Princeton, 1990); Maxwell's Demon 2: Entropy, Classical and Quantum Information, Computing (Institute of Physics, Bristol, 2003).Google Scholar
  27. 27.
    W. Trimmer, ed., Micromechanics and MEMS: Classic and Seminal Papers to 1990 (IEEE Press, New York, 1997).Google Scholar
  28. 28.
    M. C. Roco, R. S. Williams, and P. Alivisatos, eds., Nanotechnology Research Directions: IWGN Workshop Report (Kluwer Academic, Dordrecht, 2000).Google Scholar
  29. 29.
    E. Meyer, R. M. Overney, K. Dransfeld, and T. Gyalog, Nanoscience (World Scientific, Singapore, 1998), Chap. 3,5.Google Scholar
  30. 30.
    J. S. Yuan and J. J. Liou, Semiconductor Device Physics (Plenum, New York, 1998).Google Scholar
  31. 31.
    G. W. Neudeck, Vol. II: The pn junction diode 2nd edn., in Modular Series on Solid State Devices, R. F. Pierret and G. W. Neudeck, eds. (Addison-Wesley, Reading, 1989).Google Scholar
  32. 35.
    D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, Upper-Saddle River, 1999), pp. 194–196.Google Scholar
  33. 36.
    R. A. Serway and R. J. Beichner, Physics for Scientists and Engineers, 5th edn. (Saunders College, Fort Worth, 2000), p. 975.Google Scholar
  34. 44.
    D. Bishop, P. Gammel, and C. R. Giles, Physics Today 54, 38 (2001).Google Scholar
  35. 45.
    J. Cumings and A. Zettl, Science 289, 602 (2000).Google Scholar
  36. 46.
    Y. Min-Feng, B. I. Yakobson, and R. S. Ruoff, J. Phys. Chem. 104, 8764 (2000).Google Scholar
  37. 47.
    M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., Carbon Nanotubes-Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001).Google Scholar
  38. 48.
    P. J. F. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 1999).Google Scholar
  39. 52.
    R. K. Pathria, Statistical Mechanics (Pergamon, Oxford, 1972), pp. 467–474.Google Scholar
  40. 53.
    S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).Google Scholar
  41. 54.
    S. Matsui, Proc. IEEE 85, 629 (1997).Google Scholar
  42. 55.
    J. Sone, Nanotechnology 10, 135 (1999).Google Scholar
  43. 56.
    S. I. Stupp et al., Science 276, 384 (1997).Google Scholar
  44. 57.
    S. Y. Chou and L. Zhuang, J. Vac. Sci. Technol. B 17, 3197 (1999).Google Scholar
  45. 58.
    W. M. Becker, J. B. Reece, and M. F. Poenie, The World of the Cell (Benjamin/ Cummings, Menlo Park, 1996), Chap. 1,20.Google Scholar
  46. 59.
    C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University, New York, 1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • D. P. Sheehan
    • 1
  • A. R. Putnam
    • 1
  • J. H. Wright
    • 2
  1. 1.Department of PhysicsUniversity of San DiegoSan Diego
  2. 2.Department of Mathematics and Computer ScienceUniversity of San DiegoSan Diego

Personalised recommendations