Skip to main content

Advertisement

Log in

A Turbulence-Chemistry Interaction Model Based on a Multivariate Presumed Beta-PDF Method for Turbulent Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A turbulence-chemistry interaction model based on presumed probability density functions (PDF) is presented. It can be coupled with conventionally reduced mechanisms and is capable of capturing major and minor species distribution features in turbulent diffusion flames. Combined with a reduced mechanism using intrinsic low-dimensional manifolds (ILDM), the method in which the joint PDF is assumed to be a product of one-dimensional β-PDFs is successfully applied to model the turbulent mixing and scalar field of a turbulent piloted methane/air flame. Although the so-called flames E and F provide a superior test of a model's ability to treat finite-rate chemistry, this work focusses on the flame D. A Reynold stress closure of second order is used for the turbulence description whilst gradient ansatz are postulated for scalar fluxes. Results of the simulations in form of means and variances of velocity and scalars and conditional means are compared to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borghi, R., Turbulent combustion modelling. Progress in Energy and Combustion Science 14 (1988) 245-292.

    Article  Google Scholar 

  2. Pope, S.B., Pdf methods for turbulent reactive flows. Progress in Energy and Combustion Science 11 (1985) 119-192.

    Article  MathSciNet  ADS  Google Scholar 

  3. Pope, S.B., New developments in pdf modelling of nonreactive and reactive turbulent flows. In: Peeters, T.W.J. and Hanjalić, K. (eds), Proceedings of 2nd International Symposium on Turbulence, Heat and Mass Transfer. Delft, The Netherlands (1997) pp. 35-45.

    Google Scholar 

  4. Hůlek, T. and Lindstedt, R.P., Computations of steady-state and transient premixed turbulent flames using pdf methods. Combustion and Flame 104 (1996) 481-504.

    Article  Google Scholar 

  5. Lindstedt, R.P., Louloudi, S.A. and Vaos, E.M., Joint PDF modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry. In: 28th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA (2000) pp. 149-156.

    Google Scholar 

  6. Anand, M.S. and Hsu, A.T., Calculations of swirl combustors using joint velocity-scalar probability density function method. AIAA Journal 35(7) (1997) 1143-1150.

    Article  Google Scholar 

  7. Weber, R., Peters, A.A.F., Breithaupt, P.B. and Visser, B.M., Mathematical modeling of swirling flames of pulverized coal: What can combustion engineers expect from modeling? Journal of Fluids Engineering 117 (1995) 289-297.

    Google Scholar 

  8. Bilger, R.-W., Conditional moment closure for turbulent reacting flow. Physics of Fluids A 5(2) (1993) 436-444.

    Article  MATH  ADS  Google Scholar 

  9. Graham, G. and Menon, S., A comparison of scalar PDF turbulent combustion models. Combustion and Flame 113(3) (1998) 442-453.

    Article  Google Scholar 

  10. Correa, S.-M., Power generation and aeropropulsion gas turbines: from combustion science to combustion technology. In: 27th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA (1998) pp. 1793-1807.

    Google Scholar 

  11. Hinz, A., Landenfeld, T., Hassel, E.P., and Janicka, J., Advanced modeling of turbulent nonequilibrium swirling natural gas flames. In: Rodi, W. and Lawrence, D. (eds.), Proceedings of 4th International Symposium on Engineering Turbulence Modelling and Measurements, Corsica, 1999. Elsevier Science, Amsterdam (1999) pp. 831-840.

    Google Scholar 

  12. Hinz, A., Hassel, E.P. and Janicka, J., Numerical simulation of turbulent non-equilibrium methane-air jet flames using Monte Carlo PDF method. In: Banerjee, S. and Eaton, J.K. (eds.), First International Symposium on Turbulence and Shear Flow Phenomena, Santa Barbara, CA. Begell House (1999) pp. 333-338.

  13. Janicka, J. and Kollmann, W., A two-variables formalism for the treatment of chemical reactions in turbulent H2-air diffusion flames. In: 17th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA (1978) pp. 421-430.

    Google Scholar 

  14. Landenfeld, T., Numerische Beschreibung turbulenter Methandiffusionsflammen mit Schließungsmodellen zweiter Ordnung und angenommenen Wahrscheinlichkeitsdichtefunktionen. Ph.D. thesis, Technische Universität Darmstadt (1999).

  15. Landenfeld, T., Hinz, A. and Janicka, J., Statistical analysis of reactive scalars in a turbulent diffusion flame using monte carlo pdf method. In: Mohamad, C. (ed.) Joint Meeting of the British, German and French Sections, Nancy. The Combustion Institute, Pittsburgh, PA (1999) pp. 1-3.

    Google Scholar 

  16. Libby, P.A. and Williams, F.A., Turbulent Reacting Flows. Academic Press, London, San Diego, New York, 1994.

    MATH  Google Scholar 

  17. Jones, W.P., Turbulence modelling and numerical solution methods for variable density and combusting flows. In: Libby, P.A. and Williams, F.A. (eds.), Turbulent Reacting Flows. Academic Press, London (1994) pp. 309-374.

    Google Scholar 

  18. Maas, U. and Pope, S.-B., Implementation of simplified chemical kinetic based on intrinsic lowdimensional manifolds. In: 24th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA (1992) pp. 103-112.

    Google Scholar 

  19. Peters, N., Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science 10 (1984) 319-339.

    Article  Google Scholar 

  20. Peters, N., Laminar flamelet concepts in turbulent combustion. In: 21st Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA (1986) pp. 1231-1250.

    Google Scholar 

  21. Peters, N., Turbulent Combustion. Cambridge University Press, Cambridge (2000).

    MATH  Google Scholar 

  22. Gutheil, E. and Bockhorn, H., The effect of multidimensional PDFs on the turbulent reaction rate in turbulent reacting flows at moderate Damköhler numbers. PhysicoChemical Hydrodynamics 9(3/4) (1987) 525-535.

    Google Scholar 

  23. Janicka, J. and Kollmann, W., The calculation of mean radical concentrations in turbulent diffusion flames. Combustion and Flame 44 (1982) 319-336.

    Article  Google Scholar 

  24. Barlow, R.S. and Frank, J.H., Effects of turbulence on species mass fractions in methane/air jet flames. In: 27th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA (1998) pp. 1087-1095.

    Google Scholar 

  25. Barlow, R. (ed.), International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, http://www.ca.sandia.gov/tdf/Workshop.html (1999).

  26. Pitsch, H. and Steiner, H., Large-Eddy Simulation of a turbulent piloted methane/air diffusion flame (Sandia Flame D). Physics of Fluids 12(10) (2000) 2541-2554.

    Article  ADS  Google Scholar 

  27. Jones, W.P. and Musonge, P., Closure of the Reynolds stress and scalar flux equations. Physics of Fluids 31(12) (1988) 3589-3604.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Daly, B.J. and Harlow, F.H., Transport equations in turbulence. Physics of Fluids 13(11) (1970) 2634-2649.

    Article  ADS  Google Scholar 

  29. Jones, W.P., Models for turbulent flows with variable density and combustion. In: VKI LS, Prediction Methods for Turbulent Flows, Volume 1979-02. Von Karman Institute for Fluid Dynamics, Belgium (1979).

    Google Scholar 

  30. Launder, B.E. and Spalding, D.B., Mathematical Models of Turbulence. Academic Press, London (1972).

    MATH  Google Scholar 

  31. Pfuderer, D., Neuber, A., Früchtel, G., Hassel, E.P. and Janicka, J., Turbulence modulation in jet diffusion flames: Modeling and experiments. Combustion and Flame 106 (1996) 301-317.

    Article  Google Scholar 

  32. Maas, U. and Pope, S.B., Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame 88 (1992) 239-264.

    Article  Google Scholar 

  33. Pope, S.B., A monte carlo method for the pdf equations of turbulent reactive flow. Combustion Science and Technology 25 (1981) 159-174.

    Google Scholar 

  34. Neuber, A., Krieger, G., Tacke, M., Hassel, E.P. and Janicka, J., Finite rate chemistry and NO molefraction in non-premixed turbulence flames. Combustion and Flame 113 (1998) 198-211.

    Article  Google Scholar 

  35. Van Doormaal, J.P. and Raithby, G.D., Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer 7 (1984) 147-163.

    MATH  ADS  Google Scholar 

  36. Correa, S.M., Drake, M.C., Pitz, R.W. and Shyy, W., Prediction and measurement of a nonequilibrium turbulent diffusion flame. In: 20th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA (1984) pp. 337-343

    Google Scholar 

  37. Schmidt, D., Segatz, J., Riedel, U., Warnatz, J. and Maas, U., Simulation of laminar methaneair flame using automatically simplified chemical kinetics. Combustion Science and Technology 113-114 (1996) 3-16.

    Google Scholar 

  38. Yun, X. and Pope, S., PDF calculation of turbulent nonpremixed flames with local extinction. Combustion and Flame 123 (2000) 281-307.

    Article  Google Scholar 

  39. Roomina, M.R. and Bilger, R.W., Conditional moment closure modelling of turbulent menthanol jet flames Combustion Theory Modelling 3(4) (1999) 689-708.

    Article  MATH  ADS  Google Scholar 

  40. Repp, S., Sadiki, A., Schneider, C., Hinz, A., Landenfeld, T. and Janicka, J., Prediction of swirling confined diffusion flame with a Monte Carlo and a presumed-PDF-model. International Journal of Heat and Mass Transfer 45 (2002) 1271-1285.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landenfeld, T., Sadiki, A. & Janicka, J. A Turbulence-Chemistry Interaction Model Based on a Multivariate Presumed Beta-PDF Method for Turbulent Flames. Flow, Turbulence and Combustion 68, 111–135 (2002). https://doi.org/10.1023/A:1020476525625

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020476525625

Navigation