Skip to main content
Log in

Dynamics of Turbulence in Low-Speed Oscillating Bottom-Boundary Layers of Stratified Basins

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

This paper focuses on the impact of an oscillating low-speed current on the structure and dynamics of the bottom-boundary layer (BBL) in a small stratified basin. A set of high-resolution current profile measurements in combination with temperature-microstructure measurements were collected during a complete cycle of the internal oscillation (`seiching') in the BBL of Lake Alpnach, Switzerland. It was found that even a relatively long seiching period of 24 hours significantly changed the form of the near-bottom current profiles as well as the dynamics of the turbulent dissipation rate compared to the steady-state law-of-the-wall. A logarithmic fit to the measured current profiles starting at a distance of 0.5 m above the sediment led to inconsistent estimates of both friction velocity and roughness length. Moreover, a phase lag between the current and the turbulent dissipation of 1.5 hours and a persistent maximum in the current profile at a height of 2.5 to 3 m above the sediment were observed. The experimental findings were compared to the results of a k-ε turbulence model and showed good agreement in general. Specifically, the inconsistent logarithmic fitting results and the observed phase lag were reproduced well by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ledwell, J.R. and Hickey, B.M.: 1995, Evidence for enhanced boundary mixing in the Santa Monica Basin, J. Geophys. Res. 100, 20665–20679.

    Google Scholar 

  2. Goudsmit, G.-H., Peeters, F., Gloor, M. and Wüest, A.: 1997, Boundary versus diapycnal mixing in stratified natural waters, J. Geophys. Res. 102, 27903–27914.

    Google Scholar 

  3. Imberger, J.: 1998, Flux paths in a stratified lake: A review. In: J. Imberger (ed.), Physical Processes in Lakes and Oceans. Coastal and Estuarine Studies, 54, 1–18, American Geophysical Union, Washington, DC.

    Google Scholar 

  4. MacIntyre, S., Flynn, K.M., Jellison, R. and Romero, J.R.: 1999, Boundary mixing and nutrient fluxes in Mono Lake, California, Limnol. Oceanogr. 44, 512–529.

    Google Scholar 

  5. Wüest, A., Piepke, G. and Van Senden, D.C.: 2000, Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters, Limnol. Oceanogr. 45, 1388–1400.

    Google Scholar 

  6. Arneborg, L. and Liljebladh, B.: 2001, The internal seiches in Gullmar Fjord. Part II: Contribution to basin water mixing, J. Phys. Oceanogr. 31, 2567–2574.

    Google Scholar 

  7. Caldwell, D.R. and Chriss, T.M.: 1979, The viscous sublayer at the sea floor, Science 205, 1131–1132.

    Google Scholar 

  8. Gross, T.F. and Nowell, R.M.: 1983, Mean flow and turbulence scaling in a tidal boundary layer, Continental Shelf Res. 2, 109–126.

    Google Scholar 

  9. Schauer, U.: 1987, Determination of bottom boundary layer parameters at two shallow sea sites using the profile method, Continental Shelf Res. 7, 1211–1230.

    Google Scholar 

  10. Dimai, A., Gloor, M. and Wüest, A.: 1995, Bestimmung der Intensität von Turbulenz in der Bodengrenzschicht von Seen, Limnologica 24, 339–350.

    Google Scholar 

  11. Cheng, R.T., Ling, C.-H., Gartner, J.W. and Wang, P.F.: 1999, Estimates of bottom roughness length and bottom shear stress in South San Francisco, California, J. Geophys. Res. 104, 7715–7728.

    Google Scholar 

  12. Stacey, M.T., Monismith, S.G. and Burau, J.R.: 1999, Measurements of Reynolds stress profiles in unstratified tidal flow, J. Geophys. Res. 104, 10933–10949.

    Google Scholar 

  13. Rippeth, T.P., Williams, E. and Simpson, J.H.: 2002, Reynolds stress and turbulent energy production in a tidal channel, J. Phys. Oceanogr. 32, 1242–1251.

    Google Scholar 

  14. Münnich, M., Wüest, A. and Imboden, D.: 1992, Observation of the second vertical mode of the internal seiche in an alpine lake, Limnol. Oceanogr. 37, 1705–1719.

    Google Scholar 

  15. Gloor, M., Wüest, A. and Imboden, D.: 2000, Dynamics of mixed bottom boundary layers and its implications for diapycnal transport in a stratified, natural water basin, J. Geophys. Res. 105, 8629–8646.

    Google Scholar 

  16. Kocsis, O., Prandke, H., Stips, A., Simon, A. and Wüest, A.: 1999, Comparison of dissipation of turbulent kinetic energy determined from shear and temperature microstructure, J. Marine Syst. 21, 67–84.

    Google Scholar 

  17. Batchelor, G.K.: 1959, Small-scale variation of convected quantities like temperature in turbulent fluid, Philos. Trans. Roy. Soc. Lond. Ser. A. 5, 113–133.

    Google Scholar 

  18. Imboden, D. and Wüest, A.: 1995, Mixing mechanisms in lakes. In: A. Lerman, D. Imboden and J. Gat (eds.), Physics and Chemistry of Lakes, pp. 83–138, Springer-Verlag, Berlin.

    Google Scholar 

  19. Elliott, A.J.: 1984, Measurements of the turbulence in an abyssal boundary layer, J. Phys. Oceanogr. 14, 1779–1786.

    Google Scholar 

  20. Chriss, T.M. and Caldwell, D.R.: 1982, Evidence for the influence of form drag on bottom boundary layer flow, J. Geophys. Res. 87, 4148–4154.

    Google Scholar 

  21. Baumert, H. and Radach, G.: 1992, Hysteresis of turbulent kinetic energy in nonrotational tidal flows: A model study, J. Geophys. Res. 97, 3669–3677.

    Google Scholar 

  22. Simpson, J.H., Rippeth, T.P. and Campbell, A.R.: 2000, The phase lag of turbulent dissipation in tidal flow. In: T. Yanagi (ed.), Interactions between Estuaries, Coastal Seas and Shelf Seas, pp. 57–67, Terra Scientific Publishing Company (TERRAPUB), Tokyo.

    Google Scholar 

  23. Soulsby, R.L. and Dyer, K.R.: 1981, The form of the near-bed velocity profile in a tidally accelerating flow, J. Geophys. Res. 86, 8067–8074.

    Google Scholar 

  24. Foster, D.L., Beach, R.A. and Holman, R.A.: 2000, Field observations of the wave bottom boundary layer, J. Geophys. Res. 105, 19631–19641.

    Google Scholar 

  25. Schlichting, H.: 1962, Boundary Layer Theory, 6th edn., 744 pp, McGraw-Hill, New York.

    Google Scholar 

  26. Wüest, A. and Gloor, M.: 1998, Bottom boundary mixing: The role of near-sediment density stratification. In: J. Imberger (ed.), Physical Processes in Lakes and Oceans, pp. 485–502, American Geophysical Union, Washington, DC.

    Google Scholar 

  27. Weatherly, G.L. and Martin, P.J.: 1978, On the structure and dynamics of the oceanic boundary layer, J. Phys. Oceanogr. 8, 557–570.

    Google Scholar 

  28. Mellor, G.L. and Yamada, T.: 1974, A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  29. Burchard, H. and Baumert, H.: 1995, On the performance of a mixed-layer model based on the k–ε turbulence closure, J. Geophys. Res. 100, 8523–8540.

    Google Scholar 

  30. Vager, B.G. and Kagan, B.A.: 1971, The dynamics of the turbulent layer in a tidal current, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 21, 103–111.

    Google Scholar 

  31. Smith, T.J. and Takhar, H.S.: 1979, On the calculation of the width averaged flow due to long waves in an open channel, J. Hydraul. Eng. 17, 329–340.

    Google Scholar 

  32. Smith, T.J. and Takhar, H.S.: 1981, A mathematical model for partially mixed estuaries using the turbulence energy equation, Estuar., Coast. Shelf Sci. 13, 27–45.

    Google Scholar 

  33. Richards, K.J.: 1982, Modeling the benthic boundary layer, J. Phys. Oceanogr. 12, 428–439.

    Google Scholar 

  34. Burchard, H., Peterson, O. and Rippeth, T.P.: 1998, Comparing the performance of the Mellor-Yamada and the k–ε two-equation turbulence models, J. Geophys. Res. 103, 10,543–10,554.

    Google Scholar 

  35. Güting, P. and Hutter, K.: 1998, Modelling wind-induced circulation in the homogeneous Lake Constance using a k–ε closure, Aquat. Sci. 60, 266–277.

    Google Scholar 

  36. Ahsan, A.K.M. and Blumberg, A.F.: 1999, Three-dimensional hydrothermal model of Onondaga Lake, J. Hydraul. Eng. 125, 912–923.

    Google Scholar 

  37. Lemmin, U.: 1987, The structure and dynamics of internal waves in Baldeggersee, Limnol. Oceanogr. 32, 43–61.

    Google Scholar 

  38. Bäuerle, E., Ollinger, D. and Imberger, J.: 1998, Some meteorological, hydrological and hydrothermal aspects of Upper lake Constance, Arch. Hydrobiol. Spec. Issues Adv. Limnol. 53, 31–83.

    Google Scholar 

  39. Rodi, W.: 1987, Examples of calculation methods for flow and mixing in stratified fluids, J. Geophys. Res. 92, 5305–5328.

    Google Scholar 

  40. Umlauf, L.: 2001, Turbulence Parameterization in Hydrobiological Models for Natural Waters, Ph.D. Thesis, University of Darmstadt, Department of Mechanics, Germany. ISBN 3–8311–2627–0.

    Google Scholar 

  41. Simpson, J.H.: 1997, Physical processes in the ROFI regime, J. Marine Syst. 12, 3–15.

    Google Scholar 

  42. Rippeth, T.P., Fisher, N.R. and Simpson, J.H.: 2001, The cycle of turbulent dissipation in the presence of tidal straining, J. Phys. Oceanogr. 31, 2458–2471.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorke, A., Umlauf, L., Jonas, T. et al. Dynamics of Turbulence in Low-Speed Oscillating Bottom-Boundary Layers of Stratified Basins. Environmental Fluid Mechanics 2, 291–313 (2002). https://doi.org/10.1023/A:1020450729821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020450729821

Navigation