Skip to main content
Log in

The Effects of Exogenous Nitric Oxide on the Function of Neuromuscular Synapses

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Extracellular recording experiments using neuromuscular skin/chest muscle preparations from lake frogs were performed at low extracellular Ca2+ ion concentrations to study the effect of L-arginine (the substrate for nitric oxide synthesis) and NG-nitro-L-arginine methyl ester (a blocker of NO synthase) on the parameters of evoked transmitter secretion and ion currents in motor nerve endings. L-arginine at a concentration of 100 μM decreased the amplitude of endplate currents as well as their quantum composition, and also increased the amplitude of the third phase of the evoked nerve ending response, which reflects the kinetics of potassium influx currents. NG-nitro-L-arginine methyl ester at a condition of 100 μM led to increases in the amplitude and quantum composition of endplate currents and decreased the amplitude of the third phase of the evoked nerve ending response. It is suggested that endogenous nitric oxide is produced in frog neuromuscular synapses, which in normal conditions suppresses transmitter secretion and modulates the function of potassium channels in the nerve ending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. L. Zefirov and I. A. Khalilov, “Ion currents in nerve terminals of the sartorius muscle,” Neirofiziologiya, 17, 344–349 (1985).

    Google Scholar 

  2. A. L. Zefirov and I. A. Khalilov, “Characteristics of electrical activity in different parts of frog nerve endings,” Byull. Éksp. Biol. Med., 49, No. 1, 7–10 (1985).

    Google Scholar 

  3. A. L. Zefirov, I. A. Khalilov, and Kh. S. Khamitov, “Calcium and calcium-activated potassium currents in the frog motor nerve ending,” Neirofziologiya, 19, No. 4, 467–472 (1987).

    Google Scholar 

  4. A. L. Zefirov, R. R. Khaliullina, and A. A. Anuchin, “Effects of exogenous nitric oxide on transmitter secretion and ion currents in the motor nerve ending,” Byull. Éksp. Biol. Med., 128, No. 8, 144–147 (1999).

    Google Scholar 

  5. A. L. Zefirov, R. R. Khaliullina, E. M. Sokolova, and R. A. Giniatullin, “Effects of sodium nitroprusside on transmitter release and the functional properties of the postsynaptic membrane in neuromuscular synapses,” Ros. Fiziol. Zh. im. I. M. Sechenova, 85, No. 5, 663–670 (1999).

    Google Scholar 

  6. M. A. Kamenskaya, “Current concepts of quantum transmitter release from skeletal muscle motor nerve endings,” Usp. Fiziol. Nauk, 3, No. 3, 22–63 (1972).

    Google Scholar 

  7. G. F. Lakin, Biometrics [in Russian], Vysshaya Shkola, Moscow (1990).

    Google Scholar 

  8. V. P. Reutov, E. G. Sorokina, V. E. Okhotin, and N. S. Kositsin, Cyclic Conversions of Nitric Oxide in Mammal Bodies [in Russian], Nauka, Moscow (1998).

    Google Scholar 

  9. A. Kh. Urazaev, “Nitric oxide-a retrograde messenger involved in the neurotrophic regulation of membrane potential in rat muscles,” Neirokhimiya, 12, No. 2, 75–76 (1995).

    Google Scholar 

  10. A. Kh Urazaev and A. L. Zefirov, “The physiological role of nitric oxide,” Usp. Fiziol. Nauk, 30, No. 1, 54–72 (1999).

    Google Scholar 

  11. M. Cetiner and M. R. Bennett, “Nitric oxide modulation of calcium-activated potassium channels in postganglionic neurones of avian cultured ciliary ganglia,” Brit. J. Pharmacol., 110, No. 3, 995–1002 (1993).

    Google Scholar 

  12. A. Costa, P. Trainer, M. Besser, et al., “Nitric oxide modulates the release of corticotropin-releasing hormone from rat hypothalamus in vitro,” Brain Res., 605, 187–192 (1993).

    Google Scholar 

  13. Z. Grozdanovic and H. G. Baumgarten, “Nitric oxide synthase in skeletal muscle fibers: a signaling component of the dystrophin-glycoprotein complex,” Histol. Histopathol., 14, 143–256 (1999).

    Google Scholar 

  14. L. E. Gustafsson, N. P. Winklund, M. G. Persson, and S. Moncada, “Modulation of autonomic neuroeffector by nitric oxide in guinea pig ileum,” Biochem. Biophys. Res. Comm., (1990).

  15. I. Hanbauer, D. Wink, Y. Osawa, et al., “Role of nitric oxide in NMDA-evoked release from [3H]-dopamine in striatal slices,” NeuroReport, 3, 409–412 (1992).

    Google Scholar 

  16. T. M. Jessell and E. R. Kandel, “Synaptic transmission: A bidirectional and self-modifiable form of cell-cell communication,” Cell, 72/Neuron, 10, supplement (1993).

  17. S. A. Lindgren and M. W. Laird, Nitroprusside inhibits neurotransmitter release at the frog neuromuscular junction,” NeuroReport, 5, No. 16, 2205–2208 (1994).

    Google Scholar 

  18. G. Lonart, J. Wang, and K. M. Johnson, “Nitric oxide induces neurotransmitter release from hippocampal slices,” Eur. J. Pharmacol., 220, 271 (1992).

    Google Scholar 

  19. L. Magliola and A. W. Jones, “Sodium nitroprusside alters Ca2+ flux components and Ca2+-dependent fluxes of K+and Cl-in rat aorta,” J. Physiol., 130, No. 21, 411–424 (1990).

    Google Scholar 

  20. R. C. Malenka, J. A. Kauer, D. J. Perkel, et al, “An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation,” Nature, 340, 554–557 (1988).

    Google Scholar 

  21. O. Manzoni, L. Prezeau, P. Martin, et al., “Nitric oxide-induced blockade of NMDA receptors,” Neuron, 8, 653–662 (1992).

    Google Scholar 

  22. L. G. Meszaros, I. Minarovic, and A. Zahradnikova, “Inhibition of the skeletal muscle ryanodine receptor calcium release channel by nitric oxide,” FEBS Lett., 380, 49–52 (1996).

    Google Scholar 

  23. M. R. Mukhtarov, F. Vyskocel, A. Kh. Urazaev, and E. E. Nikolsky, “Non-quantal acetylcholine release is increased after nitric oxide synthase inhibition,” Physiol. Res., 48, 315–317 (1999).

    Google Scholar 

  24. H. Prast and A. Phillipi, “Nitric oxide releases acetylcholine in the basal forebrain,” Eur. J. Pharmacol., 216, 139–140 (1992).

    Google Scholar 

  25. J. Ribera, J. Marsal, A. Casanovas, M. Hukkanen, O. Tarabal, and J. E. Esquerada, “Nitric oxide synthase in the rat neuromuscular junction and in nerve terminals of Torpedo electric organ: its role as regulator of acetylcholine release,” J. Neurosci. Res., 51, 90–102 (1998).

    Google Scholar 

  26. E. M. Shuman and D. V. Madison, “Nitric oxide and synaptic function,” Ann. Rev. Neurosci., 17, 153–183 (1994).

    Google Scholar 

  27. W. Van der Kloot and J. Molgo, “Quantal acetylcholine release at the vertebrate neuromuscular junction,” Physiol. Rev., 74, No. 4, 899–891 (1994).

    Google Scholar 

  28. X. Z. Zhu and L. G. Luo, “Effect of nitroprusside (nitric oxide) on endogenous dopamine release from rat striatal slices,” J. Neurochem., 59, 932–935 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zefirov, A.L., Khaliullina, R.R., Anuchin, A.A. et al. The Effects of Exogenous Nitric Oxide on the Function of Neuromuscular Synapses. Neurosci Behav Physiol 32, 583–588 (2002). https://doi.org/10.1023/A:1020449425703

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020449425703

Navigation