Skip to main content
Log in

Nonlinear Longitudinal Strain Waves in a Solid Exposed to Pulsed Laser Radiation

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The propagation of longitudinal strain waves in a solid with quadratic nonlinearity of elastic continuum was studied in the context of a model that takes into account the joint dynamics of elastic displacements in the medium and the concentration of the laser-induced point defects. The input equations of the problem are reformulated in terms of only the total displacements of the medium points. In this case, the presence of structural defects manifests itself in the emergence of a delayed response of the system to the propagation of the strain-related perturbations, which is characteristic of media with relaxation or memory. The model equations describing the nonlinear displacement wave were derived with allowance made for the values of the relaxation parameter. The influence of the generation, relaxation, and the strain-induced drift of defects and the flexoelectricity on the propagation of this wave was analyzed. It is shown that, for short relaxation times of defects, the strain can propagate in the form of both shock fronts and solitary waves (solitons). Exact solutions depending on the type of relation between the coefficients in the equation and describing both the shock-wave structures and the evolution of solitary waves are presented. In the case of longer relaxation times, shock waves do not form and the strain wave propagates only in the form of solitary waves or a train of solitons. The contributions of the finiteness of the defect-recombination rate and the flexoelectricity to linear elastic moduli and spatial dispersion are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Engelbrecht and U. K. Nigul, Nonlinear Deformation Waves [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  2. A. M. Samsonov, G. V. Dreiden, A. V. Porubov, and I. V. Semenova, Pis'ma Zh. Tekh. Fiz., 22, 61 (1996).

    Google Scholar 

  3. G. V. Dreiden, Yu. I. Ostrovskii, and A. M. Samsonov, Zh. Tekh. Fiz., 58, 2040 (1988).

    Google Scholar 

  4. A. M. Samsonov, G. V. Dreiden, A. V. Porubov, and I. V. Semenova, Phys. Rev. B, 57, 5778 (1998).

    Google Scholar 

  5. A. M. Samsonov, Appl. Anal., 57, 85 (1995).

    Google Scholar 

  6. M. Toda, Theory of Nonlinear Lattices, Springer Ser. Solid-State Sci., Vol. 20, Springer, Berlin (1981).

    Google Scholar 

  7. L. M. Lyamshev, Usp. Fiz. Nauk, 135, 637 (1981).

    Google Scholar 

  8. A. V. Porubov and M. G. Velarde, Waves Motion, 35, 189 (2002).

    Google Scholar 

  9. A. A. Karabutov, V. T. Platonenko, O. V. Rudenko, and V. A. Chupryna, Vestn. Mosk. Univ., Ser. 3: Fiz., 25, 88 (1984).

    Google Scholar 

  10. V. S. Mashkevich and K. B. Tolpygo, Zh. Éksp. Teor. Fiz., 32, 520 (1957).

    Google Scholar 

  11. A. K. Tagantsev, Zh. Éksp. Teor. Fiz., 88, 2108 (1985).

    Google Scholar 

  12. V. L. Indenbom, E. B. Loginov, and M. A. Osipov, Kristallografiya, 26, 1157 (1981).

    Google Scholar 

  13. A. M. Kosevich, Fundamentals of Crystal-Lattice Dynamics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  14. F. Kh. Mirzoev and L. A. Shelepin, Zh. Tekh. Fiz., 71, 23 (2001).

    Google Scholar 

  15. Yu. A. Bykovskii, V. N. Nevolin, and V. Yu. Fominskii, Ion and Laser Implantation into Metallic Materials [in Russian], Energoatomizdat, Moscow (1991).

    Google Scholar 

  16. F. Kh. Mirzoev, V. Ya. Panchenko, and L. A. Shelepin, Usp. Fiz. Nauk, 166, 3 (1996).

    Google Scholar 

  17. V. I. Emel'yanov, Laser Phys., No. 2, 389 (1992).

  18. A. I. Lur'e, Nonlinear Theory of Elasticity [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  19. V. I. Karpman, Nonlinear Waves in Dispersive Media, Pergamon Press, Oxford (1975) [Russ. original: Nauka, Moscow (1973)].

    Google Scholar 

  20. A. I. Potapov, Nonlinear Deformation Waves in Rods and Plates [in Russian], Gor'kii (1985).

  21. E. N. Pelinovskii, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 14, 67 (1971).

    Google Scholar 

  22. R. A. Vandermeer and J. C. Ogle, Acta Metall., 28, 151 (1980).

    Google Scholar 

  23. N. A. Kudryashov, Prikl. Mat. Mekh., 52, 465 (1988).

    Google Scholar 

  24. Sh. M. Kogan, Fiz. Tverd. Tela, 5, 2829 (1963).

    Google Scholar 

  25. V. V. Emtsev, T. V. Mashovets, and V. V. Mikhnovich, Fiz. Tekh. Poluprovodn., 26, 22 (1992).

    Google Scholar 

  26. I. S. Zheludev, Kristallografiya, 14, 514 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzoev, F.K., Shelepin, L.A. Nonlinear Longitudinal Strain Waves in a Solid Exposed to Pulsed Laser Radiation. Journal of Russian Laser Research 23, 409–431 (2002). https://doi.org/10.1023/A:1020446402988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020446402988

Navigation