Skip to main content
Log in

Non-Equilibrium Projection-Operator for a Quenched Thermostatted System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A projection operator formalism is presented which allows to derive an exact set of equations for correlation functions and susceptibilities in out of equilibrium situations of many particle systems. Explicitely considered is the case of an initial temperature quench in a simple liquid stabilized by a Gaussian thermostat. Implications for the violation of the fluctuation dissipation theorem in simple structural glass formers like Lennard–Jones glasses and colloidal glasses and the differences to the Kawasaki–Gunton projection operator are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Boltzmann, Vorlesungen über Gastheorie (Barth, Leipzig, 1896).

    Google Scholar 

  2. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd Ed. (Academic Press, London, 1986).

    Google Scholar 

  3. B. J. Alder and W. Alley, Physics Today 37:56 (1984).

    Google Scholar 

  4. E. G. D. Cohen, Physics Today 37:64 (1984).

    Google Scholar 

  5. J. R. Dorfman and E. G. D. Cohen, Phys. Rev. Lett. 25:1257 (1970).

    Google Scholar 

  6. M. H. Ernst and J. R. Dorfman, Phys. 61:157 (1972).

    Google Scholar 

  7. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. A 4:2055 (1971).

    Google Scholar 

  8. M. H. Ernst and J. R. Dorfman, J. Statist. Phys. 15:311 (1976).

    Google Scholar 

  9. H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics, Springer Tracts in Modern Physics, Vol. 95, G. Höhler, ed. (Springer, Berlin, 1982).

    Google Scholar 

  10. S. Nakajima, Prog. Theor. Phys. 20:948 (1958).

    Google Scholar 

  11. H. Mori, Prog. Theor. Phys. 33:423 (1965).

    Google Scholar 

  12. R. Zwanzig, J. Chem. Phys. 33:1338 (1960).

    Google Scholar 

  13. H. Z. Cummins, J. Phys. Cond. Mat. A 11:95 (1999).

    Google Scholar 

  14. W. Götze, in Liquids, Freezing and the Glass Transition, J. P. Hansen, D. Levesque, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1991).

    Google Scholar 

  15. W. Götze, J. Phys. Cond. Mat. A 11:1 (1999).

    Google Scholar 

  16. K. Kawasaki, in Phase Transitions and Critical Phenomena, Vol. 5A, C. Domb and M. S. Green, eds. (Academic Press, London, 1976).

    Google Scholar 

  17. T. Keyes, in Modern Theoretical Chemistry: Statistical Mechanics, B. J. Berne, ed. (Academic Press, New York, 1977).

    Google Scholar 

  18. U. Bengtzelius, W. Götze, and A. Sjölander, J. Phys. C 17:5915 (1984).

    Google Scholar 

  19. J. Jäckle, J. Phys. Cond. Mat. 1:267 (1989).

    Google Scholar 

  20. T. R. Kirkparick and D. Thirumalai, Phys. Rev. B 36:5388 (1987).

    Google Scholar 

  21. T. R. Kirkparick and D. Thirumalai, Phys. Rev. B 37:5342 (1988a).

    Google Scholar 

  22. T. R. Kirkparick and D. Thirumalai, Phys. Rev. A 37:4439 (1988b).

    Google Scholar 

  23. L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71:173 (1993).

    Google Scholar 

  24. A. Crisanti, H. Horner, and H. J. Sommers, Z. Phys. B 92:257 (1993).

    Google Scholar 

  25. N. E. Israeloff and T. Grigera, Europhys. Lett. 43:308 (1998).

    Google Scholar 

  26. L. C. E. Struick, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Houston, 1978).

    Google Scholar 

  27. K. Kawasaki and J. D. Gunton, Phys. Rev. A 4(5):2048 (1973).

    Google Scholar 

  28. A. Latz, J. Phys. Condens. Matt. 12:6353 (2000).

    Google Scholar 

  29. A. Latz, preprint, cond-mat/0106086 (2001b).

  30. W. Götze and A. Latz, J. Phys. Cond. Mat 1:4169 (1989).

    Google Scholar 

  31. P. Scheidler, W. Kob, A. Latz, J. Horbach, and K. Binder, Phys. Rev. B 63 (2001).

  32. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).

    Google Scholar 

  33. G. Parisi, Phys. Rev. Lett. 79:3660 (1997).

    Google Scholar 

  34. W. Kob and J. L. Barrat, Phys. Rev. Lett. 78:4581 (1997).

    Google Scholar 

  35. R. Di Leonardo, L. Angelani, G. Parisi, and G. Ruocco, Phys. Rev. Lett. 84:6054 (2000).

    Google Scholar 

  36. L. F. Cugliandolo, J. Kurchan, and P. Le Doussal, Phys. Rev. Lett. 76:2390 (1996).

    Google Scholar 

  37. J. L. Barrat and W. Kob, Europhys. Lett. 46:637 (1999).

    Google Scholar 

  38. P. De Gregorio, F. Sciortino, P. Tartaglia, E. Zaccarelli, and K. A. Dawson, preprint, cond-mat/0111018 (2001).

  39. H. Furukawa, Progr. Theoret. Phys. 62:70 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latz, A. Non-Equilibrium Projection-Operator for a Quenched Thermostatted System. Journal of Statistical Physics 109, 607–622 (2002). https://doi.org/10.1023/A:1020410514545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020410514545

Navigation