International Journal of Primatology

, Volume 19, Issue 5, pp 797–809 | Cite as

Tree Holes Used for Resting by Gray Mouse Lemurs (Microcebus murinus) in Madagascar: Insulation Capacities and Energetic Consequences

  • Jutta Schmid
Article

Abstract

I studied the insulation capacity of tree holes used by gray mouse lemurs (Microcebus murinus) in a primary dry deciduous forest in western Madagascar during the cool dry season. Tree holes had an insulating effect, and fluctuations of air temperatures were less extreme inside the holes than outside them. The insulation capacity of the tree holes peaked between 0800 and 1100 hr, when ambient temperatures ranged between 25 and 30°C. To compare tree holes, I calculated the mean difference between the internal temperature )(Ti) and the external temperature (Te) for each tree hole. Thus large differences indicate good insulation capacities. The mean difference of tree holes in living trees was significantly larger than that of tree holes in dead trees, which shows that insulation in living trees is more effective. During the dry season, the insulation capacity of tree holes in living trees decreased and was lowest in July, whereas the insulation capacity of holes in dead trees remained approximately constant. Physiological studies under natural temperature and light condition in Microcebus murinus reveal that daily torpor saves around 40% of the daily energy expenditure compared to normothermia. However, torpor can be maintained only up to the threshold body and ambient temperature of 28°C, whereat Microcebus murinus have to terminate torpor actively. By occupying insulating tree holes, mouse lemurs may stay longer in torpor, which increases their daily energy savings by an extra 5%.

Madagascar Microcebus energy expenditure torpor sleeping site 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Arnold, W. (1993). Energetic of social hibernation. In Carey, C., Floran, G. L., Wunder, B. A., and Horwitz, B. (eds.), Life in the Cold, Westview Press, Boulder, San Francisco, Oxford, pp. 65–80.Google Scholar
  2. Arnold, W., Heldmaier, G., Ortmann, S., Pohl, H., Ruf, T., and Steinlechner, S. (1991). Ambient temperatures in hibernacula and their energetic consequences for alpine marmots (Marmota marmota). Therm. Biol. 16(4): 223–226.CrossRefGoogle Scholar
  3. Bourlière, F., and Petter-Rousseaux, A. (1966). Existence probable d'un rythme métabolique saisonnier chez les cheirogaleinae (Lemuroidea). Folia Primatol. 4: 249–256.Google Scholar
  4. Chevillard, M.-C. (1976). Capacités thermorégulatrices d'un lémurien malgache, Microcebus murinus (Miller, 1777), Unpublished Ph.D. dissertation, Paris VII.Google Scholar
  5. Corbin, G. D., and Schmid, J. (1995). Insect secretions determine habitat use patterns by a female lesser mouse lemur (Microcebus murinus). Am. J. Primatol. 37: 317–324.Google Scholar
  6. Fietz, J. (1998). Body mass in wild Microcebus murinus over the dry season. Folia Primatol.Google Scholar
  7. Frey, H. (1991). Energetic significance of torpor and other energy-conserving mechanisms in free-living Sminthopsis crassicaudata (Marsupialia: Dasyuridae). Aust. J. Zool. 39: 689–708.Google Scholar
  8. Ganzhorn, J. U., and Schmid, J. (1998). Different population dynamics of Microcebus murinus in primary and secondary deciduous dry forests of Madagascar. Int. J. Primatol. 19: 785–796.CrossRefGoogle Scholar
  9. Glaser, H., and Lustick, S. (1975). Energetics and nesting behavior of the northern white-footed mouse. Peromyscus leucopus noveboracensis. Physiol. Zool. 48: 105–113.Google Scholar
  10. Goodman, S. M., Creighton, G. T., and Raxworthy, C. (1991). The food habits of the Madagascar long-eared owl (Asio madagascariensis) in south eastern Madagascar. Bonn. Zool. Beitr. 22–26.Google Scholar
  11. Goodman, S. M., Langrand, O., and Raxworthy, C. J. (1993). Food habits of the Madagascar long-eared owl Asio madagascariensis in two habitats in southern Madagascar. Ostrich 64: 79–85.Google Scholar
  12. Hamilton, I. M., and Barclay, R. M. R. (1994). Patterns of daily torpor and day-roost selection by male and female big brown bats (Eptesicus fuscus). Can. J. Zool. 72: 744–749.Google Scholar
  13. Hladik, C. M. (1980). The dry forest of the west coast of Madagascar: Climate, phenology, and food available for prosimians. In Charles-Dominique, P., Cooper, H. M., Hladik, C. M., Pages, E., Pariente, G. F., Petter-Rousseaux, A., Petter, J. J., and Schilling, A. (eds.), Nocturnal Malagasy Primates: Ecology, Physiology and Behavior. Academic Press, New York, pp. 3–40.Google Scholar
  14. Hladik, C. M., Charles-Dominique, P., and Petter, J. J. (1980). Feeding strategies of nocturnal prosimians. In Charles-Dominique, P., Cooper, H. M., Hladik, C. M., Pages, E., Pariente, G. F., Petter-Rousseaux, A., Petter, J. J., and Schilling, A. (eds.), Nocturnal Malagasy Primates: Ecology, Physiology and Behavior, Academic Press, New York, pp. 41–72.Google Scholar
  15. Koechlin, J., Guillaumet, J. L., and Morat, P. (1974). Flore et végétation de Madagascar. Flora Veg. Mundi 5: 1–687.Google Scholar
  16. Martin, R. D. (1972). A preliminary field-study of the lesser mouse lemur (Microcebus murinus J. F. Miller 1777). Z. Tierpsychiol. Beiheft 9: 43–90.Google Scholar
  17. Martin, R. D. (1973). A review of the behavior and ecology of the lesser mouse lemur (Microcebus murinus). In Crook, M. (ed.), Ecology and Behavior of Primates, Academic Press, London, New York, pp. 1–68.Google Scholar
  18. Mittermeier, R. A., Tattersall, I., Konstant, W. R., Meyers, D. M., and Mast, R. B. (1994). Lemurs of Madagascar, Conservation International, Washington, DC.Google Scholar
  19. Ortmann, S., Heldmaier, G., Schmid, J., and Ganzhorn, J. J. (1997): Spontaneous daily torpor in Malagasy mouse lemurs. Natururwissenschaften 84: 28–32.CrossRefGoogle Scholar
  20. Petter-Rousseaux, A. (1980). Seasonal activity rhythms, reproduction, and body weight variations in five sympatric nocturnal prosimians, in simulated light and climatic conditions. In Charles-Dominique, P., Cooper, H. M., Hladik, C. M., Pages, E., Pariente, G. F., Petter-Rousseaux, A., Petter, J. J., and Schilling, A. (eds.), Nocturnal Malagasy Primates: Ecology, Physiology and Behavior, Academic Press, New York, pp. 137–152.Google Scholar
  21. Rasoloarison, R. M., Rasoloandrasana, B. P. N., Ganzhorn, J. U., and Goodman, S. M. (1995). Predation on vertebrates in the Kirindy forest, western Madagascar. Ecotropica 1: 59–65.Google Scholar
  22. Russell, R. J. (1975). Body temperature and behavior of captive cheirogaleids. In Tattersall, I., and Sussman, R. W. (eds.), Lemur Biology, Plenum Press, New York, pp. 193–206.Google Scholar
  23. Sachs, L. (1992). Angewandte Statistik. 7. Auflage, Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  24. Schlund, W. (1995). Individualmarkierung und Populationsbeobachtungen bei Siebenschläfern mit Hilfe von Transpondern. In Stubbe, M., Stubbe, A., and Heidecke, D. (eds.), Methoden feldökologischer Säugetierforschung.—Wiss. Beitr. 1, Universität Halle-Wittenberg, pp. 345–354.Google Scholar
  25. Schmid, J. (1996). Oxygen consumption and torpor in mouse lemurs (Microcebus murinus and M. myoxinus): Preliminary results of a study in western Madagascar. In Geiser, F., Hulbert, A. J., and Nicol, S. C. (eds.), Adaptations to the Cold, University of New England Press, Armidale, pp. 47–54.Google Scholar
  26. Schmid, J. (1997). Torpor beim Grauen Mausmaki (Microcebus murinus) in Madagaskar: Energetische Konsequenzen und ökologische Bedeutung. Unpublished Ph.D. dissertation, Eberhard-Karls-Universität, Tübingen.Google Scholar
  27. Schmid, J., and Kappeler, P. M. (1998). Fluctuating sexual dimorphism and differential hibernation by sex in a primate, the gray mouse lemur (Microcebus murinus). Behav. Ecol. Sociobiol. 43: 125–132.CrossRefGoogle Scholar
  28. Schmidt-Nielsen, K. (1983). Animal Physiology: Adaptation and Environment, Cambridge University Press, Cambridge.Google Scholar
  29. Sealander, J. R., Jr. (1952). The relationship of nest protection and huddling to survival of Peromyscus at low temperature. Ecology 33: 63–71.Google Scholar
  30. Sorg, J.-P., and Rohner, U. (1996). Climate and tree phenology of the dry deciduous forest of the Kirindy Forest. In Ganzhorn, J. U., and Sorg, J.-P. (eds.), Primate Report 46(1), Germany, pp. 57–80.Google Scholar
  31. StatView (1992). The Ultimate Integrated Data Analysis & Presentation System, Abacus Concepts.Google Scholar
  32. Tattersall, I. (1982). The Primates of Madagascar, Columbia University Press, New York.Google Scholar
  33. Vogt, F. D., and Lynch, G. R. (1982). Influence of ambient temperature, nest availability, huddling, and daily torpor on energy expenditure in the white-footed mouse Peromyscus leucopus. Physiol. Zool. 55: 56–63.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Jutta Schmid
    • 1
    • 2
    • 3
  1. 1.Verhaltensforschung/ÖkologieDeutsches PrimatenzentrumGöttingenGermany
  2. 2.Department of ZoologyUniversity of AberdeenAberdeenScotland
  3. 3.Institute of ZoologyHamburg UniversityHamburgGermany

Personalised recommendations