Skip to main content
Log in

Application of Molecular Dynamic Simulation of Water Clusters with CO and CO2 Molecules to Binary Nucleation Problems

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamic properties of pure water clusters and aqueous aggregates with either CO or CO2 molecule were calculated by the molecular dynamics method. The resulting size dependence of the surface tension of the clusters was used to determine the size of the critical seeds. The rate of homogeneous and binary nucleation in atmospheric air was estimated. The role of polar and nonpolar impurity molecules at the initial stage of steam condensation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. P. Skripov, Metastable Liquid [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  2. V. P. Skripov, E. N. Sinitsyn, P. A. Pavlov, et al. (eds.), Thermophysical Properties of Liquids in the Metastable State, Handbook [in Russian], Atomizdat, Moscow (1980).

    Google Scholar 

  3. V. N. Chukanov and V. A. Korobitsyn, Dokl. Akad. Nauk SSSR, 307, No. 1, 153–156 (1989).

    Google Scholar 

  4. H. Flood, Z. Phys. Chem., A170, 286–294 (1934).

    Google Scholar 

  5. H. Reiss, J. Chem. Phys., 18, 840–848 (1950).

    Google Scholar 

  6. P. Mirabel and H. Reiss, Langmuir, 3, 228–234 (1987).

    Google Scholar 

  7. M. Kulmala and A. Laaksonen, J. Chem. Phys., 93, 696–701 (1990).

    Google Scholar 

  8. A. Jaecker-Voirol, P. Mirabel, and H. Reiss, ibid., 87, 4849–4852 (1987).

    Google Scholar 

  9. A. E. Galashev, A. Servida, and F. Sigon, Elektrokhim., 33, No. 2, 189–195 (1997).

    Google Scholar 

  10. J. Caldwell, L. X. Dang, and P. A. Kollman, J. Am. Chem. Soc., 112, 9144–9147 (1990).

    Google Scholar 

  11. V. P. Nikolskii (ed.), Chemist's Handbook [in Russian], Vol. 1, Khimiya, Leningrad (1971).

    Google Scholar 

  12. M. A. Spackman, J. Chem. Phys., 85, 6587–6601 (1986).

    Google Scholar 

  13. L. X. Dang, J. L. Rice, J. Caldwell, and P. A. Kollman, J. Am. Chem. Soc., 113, 2481–2486 (1991).

    Google Scholar 

  14. M. A. Spackman, J. Chem. Phys., 85, 6579–6586 (1986).

    Google Scholar 

  15. A. E. Galashev, F. Sigon, and A. Servida, Zh. Strukt. Khim., 38, No. 6, 1092–1102 (1997).

    Google Scholar 

  16. H. M. Ellerby, C. L. Weakliem, and H. Reiss, J. Chem. Phys., 95, 9209–9218 (1991).

    Google Scholar 

  17. J. S. Tse, M. L. Klein, and I. R. McDonald, ibid., 78, 2096–2097 (1983).

    Google Scholar 

  18. J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys., 23, 327–341 (1977).

    Google Scholar 

  19. J. M. Haile, Molecular Dynamics Simulation. Elementary Methods, Wiley, New York (1992).

    Google Scholar 

  20. Nishioka Kazumi, Phys. Rev., A16, 2143–2152 (1977).

    Google Scholar 

  21. G. Natanson, F. Amar, and R. S. Berry, J. Chem. Phys., 78, 399–408 (1983).

    Google Scholar 

  22. L. A. Girifalco, Statistical Physics of Materials, Wiley, New York (1973).

    Google Scholar 

  23. E. H. Gonzalez, V. I. Poltev, A. V. Teplukhin, and G. G. Malenkov, Zh. Strukt. Khim., 35, No. 6, 113–121 (1994).

    Google Scholar 

  24. V. I. Poltev, T. A. Grokhlina, and G. G. Malenkov, J. Biomol. Struct. Dynam., 2, 413–429 (1984).

    Google Scholar 

  25. T. L. Hill, Statistical Mechanics. Principles and Selected Applications, McGraw-Hill, New York (1956).

    Google Scholar 

  26. I. T. Goronovskii, Yu. P. Nazarenko, and E. F. Nekryach, Concise Handbook in Chemistry [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  27. A. E. Galashev, Kristallografiya, 44, No. 2, 203–208 (1999).

    Google Scholar 

  28. V. G. Baidakov, A. M. Kaverin, and G. Sh. Boltachev, J. Chem. Phys., 106, 5648–5657 (1997).

    Google Scholar 

  29. M. Volmer, Kinetics of New Phase Formation, Berlin (1939).

  30. C. S. Kiang and D. Stauffer, Faraday Symp. Chem. Soc., 7, 26–33 (1973).

    Google Scholar 

  31. M. P. Vukalovich et al., Thermal Technician's Handbook [in Russian], Énergiya, Moscow (1964).

    Google Scholar 

  32. V. Yu. Aleksandrov, L. I. Kubuzova, and E. P. Yablokova, Ecological Problems of Automobile Transport [in Russian], Siberian Branch, Russian Academy of Sciences, Novosibirsk (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galashev, A.E., Chukanov, V.N. & Pozharskaya, G.I. Application of Molecular Dynamic Simulation of Water Clusters with CO and CO2 Molecules to Binary Nucleation Problems. Journal of Structural Chemistry 43, 449–457 (2002). https://doi.org/10.1023/A:1020389116424

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020389116424

Keywords

Navigation