Skip to main content
Log in

Lake Redó ecosystem response to an increasing warming the Pyrenees during the twentieth century

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The ecosystem response of Lake Redó (Central Pyrenees) to fluctuations in seasonal air temperature during the last two centuries was investigated by comparison of reconstructed air temperatures with the sediment record. Fine slicing allowed a resolution of 3–6 years according to the 210Pb dating, although it was still difficult to easily investigate the response to air temperature forcing, since extreme fluctuations in temperature occur on interannual time-scales. However, the resolution was sufficient to show responses on decadal and century scales. An overall tendency to warming in mean annual temperature in the Central Pyrenees has been caused by summer and in particular by autumn increases. Many of the measured sediment variables apparently responded to these long term trends, but the significance of the relationships was highly conditioned by the structure of the data. The variables responding most on the finer time scales were the microfossils. For diatoms, chironomids and chrysophytes the main variability correlated to summer and to autumn temperatures. For two planktonic species, Fragilaria nanana and Cyclotella pseudostelligera, we found a link of their variability with temperature fluctuations in their growing months (September and October, respectively). This relationship appeared at a certain point during a general warming trend, indicating a threshold in the response. On the other hand, no significant changes in the dominant species could be linked to temperature, nor in any significant subgroup of the 180 diatom species present in the core. In contrast, for most chironomids (particularly Paratanytarsus austriacus, Heterotrissocladius marcidus and Micropsectra radialis) a negative relationship with summer temperature extended throughout the studied period. This response of the whole group gives chironomids a more robust role as indicators for recording temperature changes on long time-scales (e.g., through the Holocene) and for lake signal inter-comparison. Finally, our results indicated that, in all cases, there was a significant resilience to high frequency changes and hysteresis despite extreme fluctuations. Although we were dealing with organisms with one or many generations per year, their populations seemed to follow the decadal trends in air temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agustí-Panareda, A. & R. Thompson, 2002. Reconstructing of air temperature at eleven remote alpine and arctic lakes in Europe from 1781 to 1997. J. Paleolim. 28: 7-23.

    Google Scholar 

  • Anderson, N. J. & R. W. Battarbee, 1994. Aquatic community persistence and variability: a palaeolimnological perspective. In Giller, P. S., A. G. Hildrew & D. G. Raffaelli (eds), Aquatic Ecology. Scale, Pattern and Process. Blackwell Scientific Publications, Oxford, UK, 233-259.

    Google Scholar 

  • Appleby, P. G. & F. Oldfield, 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1-8.

    Google Scholar 

  • Appleby, P. G. & F. Oldfield, 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29-35.

    Google Scholar 

  • Appleby, P. G., 1993. Forward to the 210Pb dating anniversary series. J. Paleolim. 9: 155-160.

    Google Scholar 

  • Appleby, P. G., 1998. Dating recent sediments by 210Pb: Problems and solutions. Proc. 2nd NKS/EKO-1 Seminar, Helsinki, 2-4 April 1997.

  • Appleby, P. G., N. Richardson & P. J. Nolan, 1992. Self-absorption corrections for well-type germaniun detectors. Nucl. Inst. Meth. B 71: 228-233.

    Google Scholar 

  • Appleby, P. G., N. Richardson & P. J. Nolan, 1991. 241Am dating of lake sediments. Hydrobiologia 214: 35-42.

    Google Scholar 

  • Appleby, P. G., P. J. Nolan, D. W. Gifford, M. J. Godfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 141: 21-27.

    Google Scholar 

  • Battarbee, R. W., 1986. Diatom analysis. In Berglund, B: E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons Ltd., London, UK, 527-570.

    Google Scholar 

  • Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in alsolute diatom analysis. Limnol. Oceanogr. 27: 184-188.

    Google Scholar 

  • Bloesch, J & N. M. Burns, 1980. A critical review of sedimentation trap technique. Schweiz. Z. Hydrol. 42: 15-54.

    Google Scholar 

  • Blomqvist, S. & L. Håkanson, 1981. A review of sediment traps in aquatic environments. Arch. Hydrobiol. 91: 101-132.

    Google Scholar 

  • Catalan, J., M. Ventura, A. Brancelj, I. Granados, H. Thies, U. Nickus, A. Korhola, A. F. Lotter, A. Barbieri, E. Stuchlík, L. Lien, P. Bitušík, T. Buchaca, L. Camarero, G. H. Goudsmit, J. Kopácek, G. Lemcke, D. M. Livingstone, B. Müller, M. Rautio, M. Šiško, S. Sorvari, F. Šporka, O. Strunecký & M. Toro, 2002. Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J. Paleolim. 28: 25-46.

    Google Scholar 

  • Catalan, J. & E. J. Fee, 1994. Interannual variability in limnic ecosystems: origin, patterns and predictability. In Margalef, R. (ed.), Limnology Now: A Paradigm of Planetary Problems. Elsevier, Armsterdam, The Netherlands, 81-97.

    Google Scholar 

  • Cleveland, W. S., E. Grosse & W. M. Shyu, 1993. Local regression models. In Cambers, J. M. & T. J. Hastie (eds), Statistical Models in S. Chapman and Hall, London, UK, 309-376.

    Google Scholar 

  • Duff, K. E., B. A. Zeeb & J. P. Smol, 1995. Atlas of Chrysophycean cysts. Kluwer Academic Publishers.

  • Fjellheim, A., M. Rieradevall, G. Raddum & O. Schnell, 1997. AL:PE2 report for the period January 1993-June 1995. 3. Contemporary biology-invertebrates. Unpublished report. 56 pp.

  • Frey, D. 1986. Cladocera analysis. In Berglund, B. E. (ed.), Palaeohydrological Changes in the Temperate Zone in the Last 15,000 Years. Lake and Mire Environments. Specific Methods. International Geological Correlation Programme, Project 158, Vol. II, 227-257.

  • Hurtley, J. P. & D. E. Armstrong, 1991. Pigment preservation in lake sediments: a comparison of sedimentary environments in Trout Lake, Wisconsin. Can. J. Fish. aquat. Sci. 48: 472-486.

    Google Scholar 

  • Illies, L. (ed.), 1978. Limnofauna Europaea. Gustav Fusher Verlag, Stuttgart, Germany, 532 pp.

    Google Scholar 

  • Lami, A., F. Niessen, P. Guilizzoni, J. Masaferro & C. A. Belis, 1994. Palaeolimnological studies of the eutrophication of volcanic Lake Albano (central Italy). J. Paleolim. 10: 181-197.

    Google Scholar 

  • Legendre, P. & L. Legendre. 1998. Numerical Ecology. Elsevier, Amsterdam, The Netherlands, 853 pp.

    Google Scholar 

  • Pla, S., 2001. Chrysophycean cysts from the Pyrenees. J. Cramer, Berlin, Germany, 180 pp.

    Google Scholar 

  • Rieradevall, M., N. Bonada & N. Prat. (in press). Substrate and depth preferences of macroinvertebrates along a transect in a Pyrenean high mountain lake (Lake Redó, NE Spain). Limnetica.

  • Saether, O., 1975. Nearctic and Palaearctic Heterotrissocladius (Diptera: Chironomidae). Fisheries Research Board of Canada Bulletin, 193.

  • Schindler, D. W., P. J. Curtis, B. R. Parker & M. P. Stainton, 1996. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Science 379: 705-708.

    Google Scholar 

  • Schmid, P. E., 1993. A key to the larval Chironomidae and their instars from the Austrian Danube region Streams and Rivers. Part 1: Diamesinae, Prodiamesinae and Orthocladiinae. Wasser und Abwasser Supplement 3/93, 513 pp.

  • Sournia, A., 1987. Phytoplankton Manual. Unesco, Paris, France, 337 pp.

    Google Scholar 

  • Thompson, R. & R. M. Clark, 1993. Quantitative marine sediment core matching using a modified sequence-slotting algorithm. In Hailwood, E. A. & R. B. Kidd (eds), High Resolution Stratigraphy. J. Geol. Soc. Lond. Spec. Publ. 70: 39-49.

  • Ventura, M., L. Camarero, T. Buchaca, F. Bartumeus, D. Livingstone & J. Catalan, 2000. The main features of seasonal variability in the external forcing and dynamics of a deep mountain lake (Redó, Pyrenees). J. Limnol. 59(suppl. 1): 97-108.

    Google Scholar 

  • Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface-water palaeotemperature inference model for use with fossil midges from Eastern Canada. J. Paleolim. 18: 165-178.

    Google Scholar 

  • Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1990. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975-987.

    Google Scholar 

  • Wathne, B. (ed.), 1997. MOLAR Project manual. Norwegian Institute for Water Research. Report No. O-96061, 179 pp.

  • Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scandinavica, Supplement 19, 457 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catalan, J., Pla, S., Rieradevall, M. et al. Lake Redó ecosystem response to an increasing warming the Pyrenees during the twentieth century. Journal of Paleolimnology 28, 129–145 (2002). https://doi.org/10.1023/A:1020380104031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020380104031

Navigation