Skip to main content
Log in

Subgroups of the Split Orthogonal Group. II

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In the first paper of the present series, we proved the standardness of subgroups containing a split maximal torus in the split orthogonal group SO(n,R) over a commutative semilocal ring R for the following two situations: (1) n is even; (2) n is odd and R = K is a field. In the present paper, we prove the standardness of intermediate subgroups over a semilocal ring R in the case of an odd n. Together with the preceding papers by Z. I. Borewicz, the author, and E. V. Dybkova, this paper completes the description of the overgroups of split maximal tori in the classical groups over semilocal rings. The analysis of odd orthogonal groups turned out to be technically much more difficult than other classical cases. Unlike all preceding papers, the proof of the key step in the reduction to the case of a field relies on calculations in a class of semisimple elements that are neither microweight elements nor semisimple root elements. Bibliography: 55 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. A. Vavilov, “Subgroups of split orthogonal groups in even dimensions,” Bull. Acad. Polon. Sci., Ser. Sci. Math., 29, Nos. 9–10, 425–429 (1981).

    Google Scholar 

  2. N. A. Vavilov, “Subgroups of split orthogonal groups,” Sib. Mat. J., 29, No. 3, 341–352 (1988).

    Google Scholar 

  3. Z. I. Borewicz, “Description of subgroups of the general linear group that contain the group of diagonal matrices,” Zap. Nauchn. Semin. LOMI, 64, 12–29 (1976).

    Google Scholar 

  4. Z. I. Borewicz and N. A. Vavilov, “Subgroups of the general linear group over a semilocal ring that contain the group of diagonal matrices,” Tr. Steklov Mat. Inst., 148, 43–57 (1978).

    Google Scholar 

  5. N. A. Vavilov, “On subgroups of the general linear group over a semilocal ring that contain the group of diagonal matrices,” Vestn. Leningr. Univ., Mat. Mekh., No. 1, 10–15 (1981).

  6. N. A. Vavilov, “Bruhat decomposition for subgroups that contain the group of diagonal matrices,” Zap. Nauchn. Semin. LOMI, 103, 20–30 (1980).

    Google Scholar 

  7. N. A. Vavilov and E. V. Dybkova, “Subgroups of the general symplectic group that contain the group of diagonal matrices,” Zap. Nauchn. Semin. LOMI, 103, 31–47 (1980).

    Google Scholar 

  8. N. A. Vavilov, “Subgroups of the special linear group that contain the group of diagonal matrices,” Vestn. Leningr. Univ., Mat. Mekh., No. 4, 3–7 (1985).

  9. A. Borel and J. Tits, “Reductive groups” [Russian translation], Matematika, 11, No. 1, 43–111 (1967).

    Google Scholar 

  10. G. M. Seitz, “Subgroups of finite groups of Lie type,” J. Algebra, 61, No. 1, 16–27 (1979).

    Google Scholar 

  11. G. M. Seitz, “Properties of the known simple groups,” Proc. Symp. Pure Math., 37, 231–237 (1980).

    Google Scholar 

  12. A. E. Zalesskii, “Linear groups,” Usp. Mat. Nauk, 36, No. 6, 56–107 (1981).

    Google Scholar 

  13. A. E. Zalesskii, “Linear groups,” in: Scientific Reviews. Algebra. Topology. Geometry, Moscow (1985), pp. 135–182.

  14. A. S. Kondratiev, “Subgroups of finite Chevalley groups,” Usp. Mat. Nauk, 41, No. 1, 57–96 (1986).

    Google Scholar 

  15. N. A. Vavilov, “Subgroups of the split classical groups,” Tr. Steklov Mat. Inst., 183, 29–41 (1990).

    Google Scholar 

  16. G. M. Seitz, “The root subgroups of a maximal torus,” Proc. Symp. Pure Math., 37, 239–241 (1980).

    Google Scholar 

  17. G. M. Seitz, “On the subgroup structure of classical groups,” Commun. Algebra, 10, No. 8, 875–885 (1982).

    Google Scholar 

  18. G. M. Seitz, “Root subgroups for maximal tori in finite groups of Lie type,” Pacif. J. Math., 106, No. 1, 153–244 (1983).

    Google Scholar 

  19. N. A. Vavilov, “On the structure of the Chevalley group of type E6,” Deposited at VINITI (1986).

  20. Z. I. Borewicz, “Parabolic subgroups in linear groups over a semilocal ring,” Vestn. Leningr. Univ., No. 13, 16–24 (1976).

  21. Z. I. Borewicz, “Subgroups of linear groups rich in transvections,” Zap. Nauchn. Semin. LOMI, 75, 22–31 (1978).

    Google Scholar 

  22. Z. I. Borewicz and N. A. Vavilov, “Definition of the net subgroup,” Zap. Nauchn. Semin. LOMI, 132, 26–33 (1983).

    Google Scholar 

  23. Z. I. Borewicz and N. A. Vavilov, “Arrangement of subgroups in the general linear group over a commutative ring,” Tr. Steklov Mat. Inst., 165, 24–42 (1984).

    Google Scholar 

  24. E. V. Dybkova, “Some congruence subgroups of the symplectic group,” Zap. Nauchn. Semin. LOMI, 64, 80–91 (1976).

    Google Scholar 

  25. E. V. Dybkova, “The index of the net subgroup in the symplectic group over a Dedekind ring,” Zap. Nauchn. Semin. LOMI, 75, 74–86 (1978).

    Google Scholar 

  26. N. A. Vavilov and E. B. Plotkin, “Net subgroups of Chevalley groups,” Zap. Nauchn. Semin. LOMI, 94, 40–49 (1979).

    Google Scholar 

  27. N. A. Vavilov, “Subgroups of split orthogonal groups over a ring,” Sib. Mat. Zh., 29, No. 4, 31–43 (1988).

    Google Scholar 

  28. N. A. Vavilov, “Structure of split classical groups over a commutative ring,” Dokl. Akad. Nauk SSSR, 299, No. 6, 1300–1303 (1988).

    Google Scholar 

  29. R. W. Carter, Simple Groups of Lie Type, Wiley, London-New York (1972).

    Google Scholar 

  30. R. Steinberg, Lectures on Chevalley Groups [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  31. E. Artin, Geometric Algebra, John Wiley & Sons, New York (1988).

    Google Scholar 

  32. J. Dieudonné, Geometry of Classical Groups [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  33. J.-Y. Hée, “Groupes de Chevalley et groupes classiques,” Publ. Math. Univ. Paris. VII, No. 17, 1–54 (1984).

  34. K. Suzuki, “On parabolic subgroups of Chevalley groups over local rings,” Tôhoku Math. J., 28, No. 1, 57–66 (1976).

    Google Scholar 

  35. K. Suzuki, “On parabolic subgroups of Chevalley groups over commutative rings,” Sci. Repts. Tokyo Kyoiku Daigaku, 13, Nos. 366–382, 86–97 (1977).

    Google Scholar 

  36. N. A. Vavilov, “Parabolic subgroups of Chevalley groups over a semilocal ring,” Zap. Nauchn. Semin. LOMI, 75, 43–58 (1978).

    Google Scholar 

  37. N. A. Vavilov, “Parabolic subgroups of Chevalley groups over a commutative ring,” Zap. Nauchn. Semin. LOMI, 116, 20–43 (1982).

    Google Scholar 

  38. Z. I. Borewicz and J. O. Lesama-Serrano, “The group of invertible elements of a semiperfect ring,” in: Rings and Modules. Limit Theorems in Probability Theory. I, Leningrad (1986), pp. 14–67.

  39. N. A. Vavilov, “Conjugacy theorems for the subgroups of extended Chevalley groups that contain a split maximal torus,” Dokl. Akad. Nauk SSSR, 299, No. 2, 269–272 (1988).

    Google Scholar 

  40. N. A. Vavilov, “On the conjugacy of the subgroups of the general linear group that contain the group of diagonal matrices,” Usp. Mat. Nauk, 34, No. 5, 216–217 (1979).

    Google Scholar 

  41. O. T. O'Meara, “Lectures on linear groups” [Russian translation], in: Automorphisms of Classical Groups, Moscow (1976), pp. 57–167.

  42. J. Tits, “Isotropic semisimple groups” [Russian translation], Matematica, 9, No. 1, 149–161 (1965).

    Google Scholar 

  43. I. Hamdan, “Subgroups of the special linear group over a ring of discrete valuation,” in: Abstracts of the 19th All-Union Algebraic Conference, I (1987), p. 298.

  44. N. A. Vavilov, “The maximal subgroups of Chevalley groups that contain a maximal split torus,” in: Rings and Modules. Limit Theorems in Probability Theory. I, Leningrad (1986), pp. 67–75.

  45. M. Aschbacher, “On the maximal subgroups of the finite classical groups,” Invent. Math., 76, No. 3, 469–514 (1984).

    Google Scholar 

  46. S. Li, “Maximal subgroups in classical groups over arbitrary fields,” Proc. Symp. Pure Math., 47 (1987).

  47. P. Kleidman and M. Liebeck, “A survey of the maximal subgroups of the finite simple groups,” Geom. Dedic., 25, Nos. 1–3 (1988).

    Google Scholar 

  48. O. King, “Imprimitive maximal subgroups of the orthogonal, special orthogonal, unitary and special unitary groups,” Math. Z., 182, No. 2, 193–203 (1983).

    Google Scholar 

  49. O. King, “Imprimitive maximal subgroups of the symplectic, orthogonal and unitary groups,” Geom. Dedic., 15, No. 4, 339–353 (1984).

    Google Scholar 

  50. O. King, “Imprimitive maximal subgroups of finite orthogonal groups,” Geom. Dedic., 21, No. 4, 341–348 (1986).

    Google Scholar 

  51. R. Dye, “Maximal subgroups of the finite orthogonal and unitary groups stabilizing anisotropic subspaces,” Math. Z., 189, No. 1, 119–129 (1985).

    Google Scholar 

  52. S. Li, “Maximal subgroups containing root subgroups in finite classical groups,” Kexue Tongbao, 29, No. 1, 14–18 (1984).

    Google Scholar 

  53. S. Li and J. Zha, Certain Classes of Maximal Subgroups in Classical Groups, Lectures at the International Group Theory Symposium, Beijing (1984).

  54. S. Li, “Maximal subgroups in Ω(n;K; F) with root subgroups,” Sci. Sinica, Ser. A., 28, No. 8, 826–838 (1985).

    Google Scholar 

  55. P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, Cambridge Univ. Press (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vavilov, N.A. Subgroups of the Split Orthogonal Group. II. Journal of Mathematical Sciences 112, 4266–4276 (2002). https://doi.org/10.1023/A:1020378516076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020378516076

Keywords

Navigation