pH-metric study of the setting reaction of monocalcium phosphate monohydrate/calcium oxide-based cements

Abstract

Hydraulic calcium phosphate cements (CPCs) that are used as osseous substitutes, set by an acid–base reaction between an acid calcium phosphate and a basic calcium salt (often a phosphate). In order to gain a better understanding of the setting of the monocalcium phosphate monohydrate–calcium oxide cement that we developed and in the aim to improve its mechanical properties, the setting reaction was studied by pH-metry. The two methods described in the literature were used. In the first, cement samples were prepared then crushed after different storage periods at 37 °C, 100% RH. The powder was then immersed in pure water with stirring and the pH was measured after equilibration. In the second technique, the starting materials were poured into water while stirring and the pH were followed over time. The two methods gave different results. The first procedure provided information concerning the pH of the surrounding liquid following the partial dissolution of the cement components, rather than any information about pH changes during setting. The second method is more appropriate to follow the pH variations during setting. In this second procedure, the effects of different parameters such as crushing time, stirring rate, liquid-to-powder (L/P) ratio and temperature were investigated. These parameters may impact substantially on the shape and position of the pH=f(t) curves. One or three pH jumps were observed during the setting depending on the composition of the liquid phase. The time at which these pH jumps occurred depended on the pH of the liquid phase, the concentration of the buffer, the crushing of starting materials, the L/P ratio and the temperature. Good linear correlations were obtained (i) between the time of the pH jumps and the L/P ratio and the temperature and (ii) between the time of the first pH jump and the compressive strength and the final setting time of the cements prepared with different liquid phases. It may be assumed in view of these correlations that the results obtained in dilute solution may be extrapolated to the conditions of cement sample preparation and that the mechanical properties of the cement are directly related to the phenomena that occur at the first pH jump which corresponds to precipitation of dicalcium phosphate dihydrate.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Ishikawa, Y. Miyamoto, M. Nagamaya and K. Asaoka, Biomaterials 16 (1995) 527 and ref. 1–11 therein.

    Google Scholar 

  2. 2.

    F. C. M. Driessens, M. G. Boltong, M. I. Zapatero, R. M. H. Verbeeck, W. Bonfield, O. Bermudez, E. Fernandez, M. P. Ginebra and J. A. Planell, J. Mater. Sci. Mater. Med. 6 (1995) 272 and refs 3–35 therein.

    Google Scholar 

  3. 3.

    F. C. M. Driessens, in “Bioceramics of Calcium Phosphate”, edited by K. de Groot (CRC Press, Boca Raton, Florida, 1983).

    Google Scholar 

  4. 4.

    W. E. Brown and L. C. Chow. Dental restorative cement pastes. US Patent 4 518 430 (1985).

  5. 5.

    J. L. Lacout, E. Mejdoubi and M. Hamad, J. Mater. Sci. Mater. Med. 7 (1996) 371.

    Google Scholar 

  6. 6.

    I. C. Ison, M. T. Fulmer, B. M. Barr and B. R. Constantz, in “Hydroxyapatite and Related Materials” edited by P. W. Brown and B. R. Constantz (CRC Press and London, 1994) p. 215.

    Google Scholar 

  7. 7.

    P. Frayssinet, L. Gineste, P. Comte, J. Fages and N. Rouquet, Biomaterials 19 (1998) 971.

    Google Scholar 

  8. 8.

    O. Bermudez, M. G. Boltong, F. C. M. Driessens and J. A. Planell, J. Mater. Sci. Mater. Med. 4 (1993) 389.

    Google Scholar 

  9. 9.

    F. C. M. Driessens, M. G. Boltong, O. Bermudez and J. A. Planell, ibid. 4 (1993) 503.

    Google Scholar 

  10. 10.

    M. Bohner, P. Van Landuyt, H. P. Merkle and J. Lemaitre, ibid. 8 (1997) 675.

    Google Scholar 

  11. 11.

    K. Ishikawa, S. Takagi, L. C. Chow and Y. Ishikawa, ibid. 6 (1995) 528.

    Google Scholar 

  12. 12.

    M. P. Ginebra, E. Fernandez, M. G. Boltong, O. Bermudez and J. A. Planell, F. C. M. Driessens, Clin. Mater. 17 (1994) 99.

    Google Scholar 

  13. 13.

    K. Kurashina, H. Kurita, M. Hirano, J. M. A. De Blieck, C. P. A. T. Klein and K. De Groot, J. Mater. Sci. Mater. Med. 6 (1995) 340.

    Google Scholar 

  14. 14.

    T. Koshino, W. Kubota and T. Morii, Biomaterials 16 (1995) 125.

    Google Scholar 

  15. 15.

    D. Knaack, M. Goad, M. Ailova, C. Rey, A. Tofighi, P. Chakravarthy and D. Duke Lee, J. Biomed. Mater. Res. (Appl Biomater) 43 (1998) 399.

    Google Scholar 

  16. 16.

    F. C. M. Driessens, M. G. Boltong, J. A. Planell, O. Bermudez, M. P. Ginebra and E. Fernandez, Bioceramics, vol. 6, edited by P. Ducheyne and D. Christiansen (Proceedings of the 6th International Symposium on Ceramics in Medicine, Philadelphia, USA, November 1993) (Butterworth-Heinemann, 1993) p. 469.

  17. 17.

    L. C. Chow, S. Takagi and K. Ishikawa, in “Formation of Hydroxyapatite in Cement Systems. Hydroxyapatite and Related Materials”, edited by P. W. Brown and B. Constantz (CRC Press, London, 1994) p. 127.

    Google Scholar 

  18. 18.

    E. Fernandez, M. G. Boltong, M. P. Ginebra, O. Bermudez, F. C. M. Driessens and J. A. Planell, Clin. Mater. 16 (1994) 99.

    Google Scholar 

  19. 19.

    P. Boudeville, S. Serraj, J. M. Leloup, J. Margerit, B. Pauvert and A. Terol, J. Mater. Sci. Mater. Med. 10 (1999) 99.

    Google Scholar 

  20. 20.

    S. Serraj, P. Boudeville and A. Terol, ibid. 12 (2001) 45.

    Google Scholar 

  21. 21.

    F. C. M. Driessens, M. G. Boltong, O. Bermudez, J. A. Planell, M. P. Ginebra and E. Fernandez, ibid. 5 (1994) 164.

    Google Scholar 

  22. 22.

    O. Bermudez, M. G. Boltong, F. C. M. Driessens and J. A. Planell, ibid. 5 (1994) 160.

    Google Scholar 

  23. 23.

    C. Liu, W. Shen, Y. Gu and L. Hu, J. Biomed. Mater. Res. 351 (1997) 75.

    Google Scholar 

  24. 24.

    R. I. Martin and P. W. Brown, ibid. 35(3) (1997) 299.

    Google Scholar 

  25. 25.

    K. S. Tenhuisen and P. W. Brown, ibid. 36(2) (1997) 233.

    Google Scholar 

  26. 26.

    P. W. Brown, N. Hocker and S. Hoyle, J. Am. Ceram. Soc. 74(8) (1991) 1848.

    Google Scholar 

  27. 27.

    R. I. Martin and P. W. Brown, J. Mater. Sci. Mater. Med. 5 (1994) 96.

    Google Scholar 

  28. 28.

    M. T. Fulmer, R. I. Martin and P. W. Brown, ibid. 3 (1992) 299.

    Google Scholar 

  29. 29.

    K. S. Tenhuisen and P. W. Brown, J Biomed. Mater. Res. 36(3) (1997) 306.

    Google Scholar 

  30. 30.

    E. Fernandez, F. J. Gil, M. P. Ginebra, F. C. M. Driessens, J. A. Planell and S. M. Best, J. Mater. Sci. Mater. Med. 10 (1999) 223.

    Google Scholar 

  31. 31.

    S. Serraj, P. MichaÏlesco, J. Margerit, B. Bernard and P. Boudeville, ibid. 13 (2002) 125-131.

    Google Scholar 

  32. 32.

    M. Kouassi, P. MichaÏlesco and P. Boudeville. J. Endodont. (2002) to appear.

  33. 33.

    P. W. Brown and M. T. Fulmer, J. Am. Ceram. Soc. 74(5) (1991) 934.

    Google Scholar 

  34. 34.

    K. S. Tenhuisen and P. W. Brown, J. Mater. Sci. Mater. Med. 7 (1996) 309 and refs 20–26 therein.

    Google Scholar 

  35. 35.

    K. L. Elmore and T. D. Farr, Ind. Engr. Chem. (1940) 580.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philippe Boudeville.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nurit, J., Margerit, J., Terol, A. et al. pH-metric study of the setting reaction of monocalcium phosphate monohydrate/calcium oxide-based cements. Journal of Materials Science: Materials in Medicine 13, 1007–1014 (2002). https://doi.org/10.1023/A:1020367900773

Download citation

Keywords

  • Compressive Strength
  • Calcium Phosphate
  • Calcium Phosphate Cement
  • Dicalcium
  • Calcium Salt